A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

p97 Is in a complex with cholera toxin and influences the transport of cholera toxin and related toxins to the cytoplasm. | LitMetric

Certain protein toxins, including cholera toxin, ricin, and Pseudomonas aeruginosa exotoxin A, are transported to the lumen of the endoplasmic reticulum where they retro-translocate across the endoplasmic reticulum membrane to enter the cytoplasm. The mechanism of retrotranslocation is poorly understood but may involve the endoplasmic reticulum-associated degradation pathway. The AAA ATPase p97 (also called valosin-containing protein) participates in the retro-translocation of cellular endoplasmic reticulum-associated degradation substrates and is therefore a candidate to participate in the retrotranslocation of protein toxins. To investigate whether p97 functions in toxin delivery to the cytoplasm, we measured the sensitivity to toxins of cells expressing either wild-type p97 or a dominant ATPase-defective p97 mutant under control of a tetracycline-inducible promoter. The rate at which cholera toxin and related toxins entered the cytoplasm was reduced in cells expressing the ATPase-defective p97, suggesting that the toxins might interact with p97. To detect interaction, the cholera toxin A chain was immunoprecipitated from cholera toxin-treated Vero cells, and co-immunoprecipitation of p97 was assessed by immunoblotting. The immunoprecipitates contained both cholera toxin A chain and p97, evidence that the two proteins are in a complex. Altogether, these results provide functional and structural evidence that p97 participates in the transport of cholera toxin to the cytoplasm.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M406316200DOI Listing

Publication Analysis

Top Keywords

cholera toxin
28
p97
10
cholera
8
toxin
8
transport cholera
8
toxin toxins
8
protein toxins
8
endoplasmic reticulum
8
endoplasmic reticulum-associated
8
reticulum-associated degradation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!