Lactobacilli isolated from different food and feed samples such as raw milk, cheese, yoghurt, olives, sour dough, as well as corn and grass silage, were screened for their antifungal activities. Out of 1,424 isolates tested, 82 were shown to be inhibitory to different yeasts (Candida spp. and Zygosaccharomyces bailii) and a Penicillium sp., which were previously isolated from spoiled yoghurt and fruits. Carbohydrate fermentation patterns suggested that a substantial portion, 25%, belonged to the Lactobacillus casei group, including L. casei, L. paracasei, and L. rhamnosus. The isolates SM20 (DSM14514), SM29 (DSM14515), and SM63 (DSM14516) were classified by PCR using species-specific primers to target the corresponding type strains (L. casei, L. paracasei, and L. rhamnosus) as controls. Further molecular typing methods such as randomly amplified polymorphic DNA, pulsed-field gel electrophoresis, and sequencing analysis of the 16S rRNA gene allowed classifying strains SM20, SM29, and SM63 as L. paracasei subsp. paracasei in accordance with the new reclassification of the L. casei group proposed by Collins et al.

Download full-text PDF

Source
http://dx.doi.org/10.4315/0362-028x-68.1.111DOI Listing

Publication Analysis

Top Keywords

paracasei subsp
8
subsp paracasei
8
sm20 sm29
8
sm29 sm63
8
molecular typing
8
casei group
8
casei paracasei
8
paracasei rhamnosus
8
paracasei
6
detection antifungal
4

Similar Publications

Cooperation mechanism of flavonoid transformation by Bifidobacterium animalis subsp. lactis and Lacticaseibacillus paracasei.

Int J Food Microbiol

December 2024

School of Food Science and Technology, Shihezi University, Road Beisi, Shihezi, Xinjiang Province 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (mixed-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China. Electronic address:

Elaeagnus moorcroftii Wall. ex Schlecht (EWS) as a suitable food matrix contains abundant flavonoids for promoting human health, this study aimed to use flavonoid-targeted metabolomics and transcriptome sequencing to investigate the transformation of flavonoids in EWS juice (EWSJ) by mono- and mixed-cultures fermentations of Bifidobacterium animalis subsp. lactis HN-3 (B.

View Article and Find Full Text PDF

Survival of the probiotic strain Lacticaseibacillus paracasei subsp. paracasei F19 in high-hopped beers.

Food Res Int

November 2024

Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, Av. Professor Lineu Prestes, 580, São Paulo, SP 05508-000, Brazil; Food Research Center FoRC, University of São Paulo, Av. Professor Lineu Prestes, 580, São Paulo, SP 05508-000, Brazil. Electronic address:

This study aims to enhance understanding of probiotic lactic acid bacteria (LAB) survival in high-hopped beer formulations and their interactions with different yeasts and highlights the fermentation processes, microbial metabolism, and production of distinctive beer flavors. For this, this research used Lacticaseibacillus paracasei F19 (F19), Saccharomycodes ludwigii, and Saccharomyces cerevisiae strains US-05 (US-05) and Kveik (Kveik) for brewing. Bacterial and yeast cultures were prepared, fermented in wort, and analyzed in different hop concentrations (International Bitterness Units - IBU 0, 20, 40).

View Article and Find Full Text PDF

Probiotics, as defined by the World Health Organization, are live microorganisms that, when consumed in sufficient quantities, provide health benefits to the host. Although some countries have approved specific probiotic species for use in food, safety concerns may still arise with individual strains. subsp.

View Article and Find Full Text PDF
Article Synopsis
  • This study compared the fermentation of three bacterial strains in camel and bovine milk, finding that all strains reached viable levels over 7.0 log CFU/mL after 16 hours.
  • The strain showed a higher growth count in both types of milk, while another strain had the most significant acidifying ability.
  • The research concluded that the effectiveness of these strains was influenced by factors like incubation time, the specific strain, and the type of milk used.
View Article and Find Full Text PDF

The impact of different lactobacilli fermentations on secondary metabolites of red raspberry juice and their biotransformation pathways via metabolomics based on UHPLC-MS/MS.

Int J Food Microbiol

January 2025

School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou, China; Centre for Nutrition and Food Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD 4068, Australia. Electronic address:

Secondary metabolites are a group of invaluable phytochemicals in raspberries. Fermentation process leads to changes in the phytochemical composition of fruits. This study aimed to investigate the influence of Lacticaseibacillus paracasei subsp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!