The magnetization transfer ratio (MTR) is strongly related to the field strength (B(1)) of the saturation pulse. B(1) variations therefore can result in significant MTR variations and can affect histogram analysis, particularly if data from a large volume of interest are included. A multicenter study was performed to determine the typical range of B(1) errors and the corresponding MTR variations in brain tissue of healthy volunteers. Seven subjects were included at each center resulting in a total cohort of 28 subjects. Additionally, numerical simulations were done to study this relationship more generally for pulsed saturation. It could be demonstrated, both theoretically and empirically, that for typical B(1) errors there is a linear relationship between B(1) error and the corresponding MTR change. In addition, for proton density-weighted sequences, this relationship seems to be largely independent of the underlying relaxation properties. Mean B(1) errors in the entire brain were typically in the range between -3% and -7%. Due to different coil characteristics, significant MTR differences between different scanners and sites were observed. Using a simple correction scheme that is based on a linear regression analysis between MTR and B(1) data it was possible to reduce the intersubject variation by approximately 50%. Furthermore, interscanner variation could be reduced such that no significant differences between scanners could be detected. The correction scheme may be useful when investigating MTR as an outcome measure in single or multicenter studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mrm.20310 | DOI Listing |
Nat Nanotechnol
January 2025
Max Planck Institute for Microstructure Physics, Halle (Saale), Germany.
Magnetic random-access memory that uses magnetic tunnel junction memory cells is a high-performance, non-volatile memory technology that goes beyond traditional charge-based memories. Today, its speed is limited by the high magnetization of the memory storage layer. Here we prepare magnetic tunnel junction memory devices with a low magnetization ferrimagnetic Heusler alloy MnGe as the memory storage layer on technologically relevant amorphous substrates using a combination of a nitride seed layer and a chemical templating layer.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Basic Medicine, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan 750004, China. Electronic address:
Targeting the peculiarities of tumor tissue microenvironment different from normal tissue, such as lower pH and overexpression of hydrogen peroxide is the key to effective treatment. In this study, acid-responsive Z-scheme heterojunctions polyglycolated MoS/CoFeO (MoS = molybdenum disulfide, CoFeO = cobalt ferrite) was synthesized using a two-step hydrothermal method, designated as MSCO-PEG, guided by dual modes of photoacoustic imagine (PAI) and nuclear magnetic imaging (MRI). MSCO-PEG (PEG = polyethylene glycol) responded to the acidic environment of tumor tissues and overexpression of hydrogen peroxide to turn on multimodal synergistic treatment of tumor cells under near-infrared-II (NIR-II) illumination.
View Article and Find Full Text PDFJ Magn Reson
December 2024
Department of Medicine, University of Alberta, Canada; Department of Biochemistry, University of Alberta, Canada. Electronic address:
Solution NMR studies of large systems are hampered by rapid signal decay. We hereby introduce ROCSY (relaxation-optimized total correlation spectroscopy), which maximizes transfer efficiency across J-coupling-connected spin networks by minimizing the amount of time magnetization spends in the transverse plane. Hard pulses are substituted into the Clean-CITY TOCSY pulse element first developed by Ernst and co-workers, allowing for longer delays in which magnetization is aligned along the z-axis.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, People's Republic of China.
Water electrolysis suffers from electron transfer barriers during oxygen evolution reactions, which are spin-related for magnetic materials. Here, the electron transfer at the Fe_{64}Ni_{36}-FeNiO_{x}H_{y} interface is effectively accelerated when the electrode is heated to trigger the Invar effect in Fe_{64}Ni_{36} Invar alloy, providing more unoccupied orbitals as electron transfer channels without pairing energy. As a result of thermally stimulated changes in electronic states, Fe_{64}Ni_{36}/FeNiO_{x}H_{y} achieved a cascaded oxidation of the catalytic center and water.
View Article and Find Full Text PDFSci Adv
January 2025
Institute of Molecular Physical Science, ETH Zurich, 8093 Zurich, Switzerland.
Dynamic nuclear polarization (DNP) and emerging quantum technologies rely on the spin transfer in electron-nuclear hybrid quantum systems. Spin transfers might be suppressed by larger couplings, e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!