The atherogenic lipoprotein phenotype is characterized by an increase in plasma triglycerides, a decrease in high-density lipoprotein (HDL), and the prevalence of small, dense low-density lipoprotein (LDL) particles. The present study investigated the clinical significance of LDL size and subclasses as markers of atherosclerosis in diabetes type 2. Thirty-eight patients with type 2 diabetes, total cholesterol of less than 6.5 mmol/L, and hemoglobin A1c (HbA1c) of less than 9% were studied. Median age was 61 years, mean (+/-SD) body mass index 29 +/- 4.3 kg/m2 , and mean HbA1c 7.1 +/- 0.9 %. Laboratory parameters included plasma lipids and lipoproteins, lipoprotein (a), apolipoprotein (apo) A-I, apo B-100, apo C-III, and high-sensitivity C-reactive protein. Low-density lipoprotein size and subclasses were measured by gradient gel electrophoresis and carotideal intima media thickness (IMT) by duplex ultrasound. By factor analysis, 10 out of 21 risk parameters were selected: age, body mass index, systolic blood pressure, smoking (in pack-years), HbA1c, high-sensitivity C-reactive protein, lipoprotein (a), LDL cholesterol, HDL cholesterol, and LDL particle size. Multivariate analysis of variance of these 10 risk parameters identified LDL particle size as the best risk predictor for the presence of coronary heart disease (P = .002). Smaller LDL particle size was associated with an increase in IMT (P = .03; cut-off >1 mm). Within the different lipid parameters (total cholesterol, LDL cholesterol, HDL cholesterol, triglycerides, apo B, apo A-I, apo C-III, LDL particle size), LDL particle size was most strongly associated with the presence of coronary heart disease (P = .002) and IMT (P = .03). It is concluded that LDL size is the strongest marker for clinically apparent as well as non-apparent atherosclerosis in diabetes type 2.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.metabol.2004.08.017DOI Listing

Publication Analysis

Top Keywords

ldl particle
20
particle size
20
low-density lipoprotein
12
size subclasses
12
ldl
10
size
9
lipoprotein size
8
subclasses markers
8
clinically apparent
8
non-apparent atherosclerosis
8

Similar Publications

Unlabelled: Genome- and epigenome-wide association studies have associated variants and methylation status of carnitine palmitoyltransferase 1a (CPT1a) to reductions in very low-density lipoprotein (VLDL) cholesterol and triglyceride levels. We report significant associations between the presence of SNPs and reductions in plasma cholesterol, as well as positive associations between hepatic Cpt1a expression and plasma cholesterol levels across inbred mouse strains. Mechanistic studies show that both wild type and human apolipoprotein B100 (apoB)-transgenic mice with liver-specific deletion of (LKO) display lower circulating apoB levels consistent with reduced LDL-cholesterol (LDL-C) and LDL particle number.

View Article and Find Full Text PDF

Impact of SGLT2 Inhibitors on Lipoproteins in Type 2 Diabetes.

Curr Diab Rep

January 2025

Facultad de Farmacia y Bioquímica, Laboratorio de Lípidos y Aterosclerosis, Universidad de Buenos Aires, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC-UBA), Buenos Aires, Argentina.

Purpose Of Review: This article explores the cardiovascular effects of sodium-glucose cotransporter 2 inhibitors (SGLT2i) in patients with type 2 diabetes mellitus (T2DM), with a particular focus on their impact on lipid profiles. As evidence grows of the cardiovascular benefits of SGLT2i beyond glucose control, it is essential to better understand their effects on lipoproteins and their impact on cardiovascular disease.

Recent Findings: SGLT2i have shown significant cardiovascular benefits in patients with type 2 diabetes mellitus, beyond their role in lowering blood glucose.

View Article and Find Full Text PDF

Apolipoprotein B-containing lipoproteins in atherogenesis.

Nat Rev Cardiol

January 2025

Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.

Article Synopsis
  • ApoB is the key protein found in LDL and other lipoproteins, playing a major role in their formation and link to atherosclerosis.
  • LDL contributes to plaque formation in arteries by entering the wall and triggering inflammatory responses through interaction with other molecules, leading to harmful processes like foam cell formation.
  • Research has identified potential interventions to combat atherosclerosis by lowering lipoprotein levels and addressing the inflammatory responses in the arterial wall.
View Article and Find Full Text PDF

Purpose: The purpose of this study was to identify serum metabolites associated with age-related macular degeneration (AMD) incidence and investigate whether metabolite profiles enhance AMD risk prediction.

Methods: In a prospective cohort study involving 240,317 UK Biobank participants, we assessed the associations of 168 metabolites with AMD incidence using Cox hazards models. Principal component analysis (PCA) captured 90% of the variance in metabolites.

View Article and Find Full Text PDF

Background: The atherogenic potential of remnant cholesterol, which refers to the cholesterol content of triglyceride-rich, non-low-density lipoprotein (LDL) particles in circulation, has gained increasing attention recently. Unfortunately, very limited information is available regarding remnant cholesterol levels in Indian subjects.

Methods: This was a retrospective study conducted at a premier, tertiary care center in North India.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!