beta-Amyloid protein (Abeta) has been implicated as a key molecule in the neurodegenerative cascades of Alzheimer's disease (AD). Abeta directly induces neuronal apoptosis, suggesting an important role of Abeta neurotoxicity in AD neurodegeneration. However, the mechanism(s) of Abeta-induced neuronal apoptosis remain incompletely defined. In this study, we report that Abeta-induced neuronal death is preceded by selective alterations in expression of the Bcl-2 family of apoptosis-related genes. Specifically, we observe that Abeta significantly reduces expression of antiapoptotic Bcl-w and Bcl-x(L), mildly affects expression of bim, Bcl-2, and bax, but does not alter expression of bak, bad, bik, bid, or BNIP3.Abeta-induced downregulation of Bcl-w appears to contribute to the mechanism of apoptosis, because Abeta-induced neuronal death was significantly increased by Bcl-w suppression but significantly reduced by Bcl-w overexpression. Downstream of Bcl-w, Abeta-induced neuronal apoptosis is characterized by mitochondrial release of second mitochondrion-derived activator of caspase (Smac), an important precursor event to cell death. We observed that Smac release was potentiated by suppression of Bcl-w and reduced by overexpression of Bcl-w. Next, we investigated the upstream mediator of Abeta-induced Bcl-w downregulation and Smac release. We observed that Abeta rapidly activates c-Jun N-terminal kinase (JNK). Pharmacological inhibition of JNK effectively inhibited all measures of Abeta apoptosis: Bcl-w downregulation, Smac release, and neuronal death. Together, these results suggest that the mechanism of Abeta-induced neuronal apoptosis sequentially involves JNK activation, Bcl-w downregulation, and release of mitochondrial Smac, followed by cell death. Complete elucidation of the mechanism of Abeta-induced apoptosis promises to accelerate development of neuroprotective interventions for the treatment of AD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6725978PMC
http://dx.doi.org/10.1523/JNEUROSCI.4736-04.2005DOI Listing

Publication Analysis

Top Keywords

neuronal apoptosis
20
abeta-induced neuronal
20
neuronal death
12
smac release
12
bcl-w downregulation
12
bcl-w
11
apoptosis
8
c-jun n-terminal
8
downregulation bcl-w
8
cell death
8

Similar Publications

Background: Multiple sclerosis (MS) is a chronic autoimmune condition that damages the myelin sheath of neurons in the central nervous system, resulting in compromised nerve transmission and motor impairment. The astrocytopathy is considered one of the prominent etiological factor in the pathophysiology of demyelination in MS. The expression level of ceramide synthase-2 (CS-2) is yet to be established in the pathophysiology of astrocytopathy although the derailed ceramide biosynthetic pathways is well demonstrated in the pathophysiology of demyelination.

View Article and Find Full Text PDF

rTMS improves cognitive function and its real-time and cumulative effect on neuronal excitability in aged mice.

Brain Res

January 2025

Key Laboratory of Digital Medical Engineering of Hebei Province, College of Electronic & Information Engineering, Hebei University, Baoding, Hebei 071002, PR China. Electronic address:

Repetitive transcranial magnetic stimulation (rTMS) is acknowledged for its critical role in modulating neuronal excitability and enhancing cognitive function. The dentate gyrus of the hippocampus is closely linked to cognitive processes; however, the precise mechanisms by which changes in its excitability influence cognition are not yet fully understood. This study aimed to elucidate the effects on granule cell excitability and the effects on cognition of high-frequency rTMS in naturally aging mice, as well as to investigate the potential interactions between these two factors.

View Article and Find Full Text PDF

Enhanced Nasal-to-Brain Drug Delivery by Multivalent Bioadhesive Nanoparticle Clusters for Cerebral Ischemic Reperfusion Injury Protection.

Acta Biomater

January 2025

School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China; School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China. Electronic address:

Following cerebral ischemia, reperfusion injury can worsen ischemia-induced functional, metabolic disturbances, and pathological damage upon blood flow restoration, potentially leading to irreversible harm. Yet, there's a dearth of advanced, localized drug delivery systems ensuring active pharmaceutical ingredient (API) efficacy in cerebral protection during ischemia-reperfusion. This study introduces a multivalent bioadhesive nanoparticle-cluster, merging bioadhesive nanoparticles (BNPs) with dendritic polyamidoamine (PAMAM), enhancing nose-to-brain delivery and brain protection efficacy against cerebral ischemia-reperfusion injuries (CIRI).

View Article and Find Full Text PDF

A OHCs-Targeted Strategy for PEDF Delivery in Noise-Induced Hearing Loss.

Adv Healthc Mater

January 2025

Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, P. R. China.

Noise-induced hearing loss (NIHL) results from prolonged exposure to intense noise, causing damage to sensory outer hair cells (OHCs) and spiral ganglion neurons (SGNs). The blood labyrinth barrier (BLB) hinders systemic drug delivery to the inner ear. This study applied a retro-auricular round window membrane (RWM) method to bypass the BLB, enabling the transport of macromolecular proteins into the inner ear.

View Article and Find Full Text PDF

Unraveling the dual role of bilirubin in neurological Diseases: A Comprehensive exploration of its neuroprotective and neurotoxic effects.

Brain Res

January 2025

Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India. Electronic address:

Neurodegenerative disorders are characterized by a progressive loss of neurons, causing substantial deficits in motor and cognitive functioning. Bilirubin is a yellow by-product of heme, existing in two primary isoforms namely unconjugated and conjugated, while initially produced unconjugated isomer is lipophilic and cytotoxic in nature. At physiological levels, bilirubin has an important role in brain function by acting as a powerful antioxidant, preventing brain tissues from oxidative damage by eliminating reactive oxygen species (ROS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!