Wiring enzymes in nanostructures built with electrostatically self-assembled thin films.

Chemphyschem

INQUIMAE, Departamento de Química Inorgánica Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellon 2, Ciudad Universitaria 1428 Buenos Aires, Argentina.

Published: January 2005

The construction of electrostatically self-assembled intelligent nanostructures on electrodes with redox enzyme layers and redox polymer molecular wires defined in space allowed the analysis of redox charge transport from the redox enzyme to the electrode along nanometric distances. Recent results on the electrical connection of enzymes to electrodes and perspectives of generating electrical signals from molecular recognition in integrated enzyme electrodes are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.200400312DOI Listing

Publication Analysis

Top Keywords

electrostatically self-assembled
8
redox enzyme
8
wiring enzymes
4
enzymes nanostructures
4
nanostructures built
4
built electrostatically
4
self-assembled thin
4
thin films
4
films construction
4
construction electrostatically
4

Similar Publications

Biological materials, such as bamboo, are naturally optimized composites with exceptional mechanical properties. Inspired by such natural composites, traditional methods involve extracting nanofibers from natural sources and applying them in composite materials, which, however, often results in less ideal mechanical properties. To address this, this study develops a bottom-up nanofiber assembly strategy to create strong fiber-reinforced composite hydrogels inspired by the hierarchical assembly of bamboo.

View Article and Find Full Text PDF

The crowded bacterial cytoplasm is composed of biomolecules that span several orders of magnitude in size and electrical charge. This complexity has been proposed as the source of the rich spatial organization and apparent anomalous diffusion of intracellular components, although this has not been tested directly. Here, we use biplane microscopy to track the 3D motion of self-assembled bacterial genetically encoded multimeric nanoparticles (bGEMs) with tunable size (20 to 50 nm) and charge (-3,240 to +2,700 e) in live cells.

View Article and Find Full Text PDF

A multiscale approach is employed to investigate the interaction dynamics between interleukin-6, a key cancer biomarker, and alkyl-functionalized surfaces, with the ultimate goal of guiding biosensor design. The study integrates classical molecular dynamics, Brownian dynamics simulations, and binding experiments to explore the adsorption dynamics and energetics of IL-6 on surfaces modified with self-assembled monolayers (SAMs). The comparative analysis reveals a dramatic effect on the interaction strength of IL-6 with a SAMs comprising a mix of charged and hydrophobic ligands.

View Article and Find Full Text PDF

Tea polyphenol-loaded chitosan/pectin nanoparticle as a nucleating agent for slurry ice production and its application in preservation of large yellow croaker (Pseudosciaena crocea).

Int J Biol Macromol

January 2025

College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China. Electronic address:

Slurry ice preparation experiences considerable supercooling, which can be mitigated by nano-nucleating agents. A nano-nucleating agent (CH/PE-TP NPs) was prepared by ultrasonication-assistant self-assembly of chitosan (CH) and pectin (PE), encapsulated with tea polyphenols (TP). Ultrasonication for 10 min downsized self-assembled aggregates from 5.

View Article and Find Full Text PDF

Multifunctional hyaluronic acid microneedle patch enhances diabetic wound healing in diabetic infections.

Int J Biol Macromol

January 2025

Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China; Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China. Electronic address:

Diabetic wounds often exhibit a chronic non-healing state due to the combined effects of multiple factors, including hyperglycemia, impaired angiogenesis, immune dysfunction, bacterial infection, and excessive oxidative stress. Despite the availability of various therapeutic strategies, effectively managing the complex and prolonged healing process of diabetic infected wounds remains challenging. In this study, we combined the natural antidiabetic drug lipoic acid (LA) with the RADA16-YIGSR (RY) peptide obtained through solid-phase synthesis, utilizing reversible hydrogen bonds and coordination bonds for binding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!