Epidemiological and basic research suggests that nonsteroidal anti-inflammatory drugs (NSAIDs) should protect against the most common forms of Alzheimer's disease (AD). Ibuprofen reduces amyloid (Abeta) pathology in some transgenic models, but the precise mechanisms remain unclear. Although some reports show select NSAIDs inhibit amyloid production in vitro, the possibility that in vivo suppression of amyloid pathology occurs independent of Abeta production has not been ruled out. We show that ibuprofen reduced Abeta brain levels in rats from exogenously infused Abeta in the absence of altered Abeta production. To determine whether ibuprofen inhibits pro-amyloidogenic factors, APPsw (Tg2576) mice were treated with ibuprofen for 6 months, and expression levels of the Abeta and inflammation-related molecules alpha1 antichymotrypsin (ACT), apoE, BACE1, and peroxisome proliferator-activated receptor gamma) (PPARgamma) were measured. Among these, ACT, a factor whose overexpression accelerates amyloid pathology, was reduced by ibuprofen both in vivo and in vitro. IL-1beta, which was reduced in our animals by ibuprofen, induced mouse ACT in vitro. While some NSAIDs may inhibit Abeta42 production, these observations suggest that ibuprofen reduction of Abeta pathology may not be mediated by altered Abeta42 production. We present evidence supporting the hypothesis that ibuprofen-dependent amyloid reduction is mediated by inhibition of an alternate pathway (IL-1beta and its downstream target ACT).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/sj.npp.1300668 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!