Direct transcriptional regulation of Bim by FoxO3a mediates STI571-induced apoptosis in Bcr-Abl-expressing cells.

Oncogene

Cancer Research-UK labs, Department of Cancer Medicine, MRC Cyclotron Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK.

Published: March 2005

In this study, we have used the human BV173 and the mouse BaF3/Bcr-Abl-expressing cell lines as model systems to investigate the molecular mechanisms whereby STI571 and FoxO3a regulate Bim expression and apoptosis. FoxO3a lies downstream of Bcr-Abl signalling and is constitutively phosphorylated in the Bcr-Abl-positive BV173 and BaF3/Bcr-Abl cells. Inhibition of Bcr-Abl kinase by STI571 results in FoxO3a activation, induction of Bim expression and apoptosis. Using reporter gene assays, we demonstrate that STI571 and FoxO3a activate Bim transcription through a FoxO-binding site (FHRE) located within the promoter. This was verified by DNA pull-down and chromatin immunoprecipitation analyses. We find that conditional activation of FoxO3a leads to induction of Bim expression and apoptosis. Conversely, silencing of FoxO3a in Bcr-Abl-expressing cells abolishes STI571-mediated Bim induction and apoptosis. Together, the results presented clearly confirm FoxO3a as a key regulator of apoptosis induced by STI571, and show that Bim is a direct transcriptional target of FoxO3a that mediates the STI571-induced apoptosis. Thus, STI571 induces an accumulation of FoxO3a activity which in turn binds directly to an FHRE in the promoter to activate Bim expression and apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.onc.1208421DOI Listing

Publication Analysis

Top Keywords

bim expression
16
expression apoptosis
16
sti571 foxo3a
12
foxo3a
10
direct transcriptional
8
bim
8
foxo3a mediates
8
mediates sti571-induced
8
apoptosis
8
sti571-induced apoptosis
8

Similar Publications

ECM stiffness regulates lung fibroblast survival through RasGRF1 dependent signaling.

J Biol Chem

January 2025

Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA. Electronic address:

Extracellular matrix stiffness is one of the multiple mechanical signals that alters cellular behavior. During studies exploring the effect of matrix rigidity on lung fibroblast survival we discovered that enhanced survival on stiff substrates is dependent on elevated Ras activity, owing to the activation of the GEF, RasGRF1. Mechanistically, we found that the increased Ras activity lead to the activation of both the AKT and ERK pathways.

View Article and Find Full Text PDF

DEAD/H Box 5 (DDX5) Augments E2F1-Induced Cell Death Independent of the Tumor Suppressor p53.

Int J Mol Sci

December 2024

Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan.

In almost all cancers, the p53 pathway is disabled and cancer cells survive. Hence, it is crucially important to induce cell death independent of p53 in the treatment of cancers. The transcription factor E2F1 is controlled by binding of the tumor suppressor pRB, and induces apoptosis by activating the gene, an upstream activator of p53, when deregulated from pRB by loss of pRB function.

View Article and Find Full Text PDF

Neuroblastoma response to RAS-MAPK inhibitors and APR-246 (eprenetapopt) co-treatment is dependent on SLC7A11.

Front Oncol

December 2024

Cansearch Research Platform for Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland.

Background: We previously demonstrated that APR-246 (eprenetapopt) could be an efficient treatment option against neuroblastoma (NB), the most common pediatric extracranial solid tumor. APR-246's mechanism of action is not completely understood and can differ between cell types. Here we investigate the involvement of well-known oncogenic pathways in NB's response to APR-246.

View Article and Find Full Text PDF

Blockade of PVN neuromedin B receptor alleviates inflammation via the RAS/ROS/NF-κB pathway in spontaneously hypertensive rats.

Brain Res Bull

January 2025

Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China. Electronic address:

Neuromedin B (NMB) has potentially great impacts on the development of cardiovascular diseases by promoting hypertensive and sympatho-excitation effects. However, studies regarding the NMB function in paraventricular nucleus (PVN) are lacking. With selective neuromedin B receptor (NMBR) antagonist, BIM-23127, we aim to determine whether the blockade of NMB function in PVN could alleviate central inflammation and attenuate hypertensive responses.

View Article and Find Full Text PDF

The TGFβ signaling pathway is known for its pleiotropic functions in a plethora of biological processes. In melanoma, TGFβ signaling promotes invasiveness and metastasis formation. However, its involvement in the response to therapy is controversial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!