Vibrio parahaemolyticus isolates display variation in colony morphology, alternating between opaque (OP) and translucent (TR) cell types. Phase variation is the consequence of genetic alterations in the locus encoding the quorum sensing output regulator OpaR. Here, we show that both cell types form stable, but distinguishable biofilms that differ with respect to attachment and detachment profiles to polystyrene, pellicle formation and stability at the air/medium interface, and submerged biofilm architecture and dispersion at a solid/liquid interface. The pellicle, which is a cohesive mat of cells, was exploited to identify mutants having altered or defective biofilm formation. Transposon insertion mutants were obtained with defects in genes affecting multiple cell surface characteristics, including extracellular polysaccharide, mannose-sensitive haemagglutinin type 4 pili and polar (but not lateral) flagella. Other insertions disrupted genes coding for potential secreted proteins or transporters of secreted proteins, specifically haemolysin co-regulated protein and an RTX toxin-like membrane fusion transporter, as well as potential modifiers of cell surface molecules (nagAC operon). The pellicle screen also identified mutants with lesions in regulatory genes encoding H-NS, a CsgD-like repressor and an AraC-like protein. This work initiates the characterization of V. parahaemolyticus biofilm formation in the OP and TR cell types and identifies a diverse repertoire of cell surface elements that participate in determining multicellular architecture.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2958.2004.04453.xDOI Listing

Publication Analysis

Top Keywords

cell types
12
cell surface
12
opaque translucent
8
vibrio parahaemolyticus
8
biofilm formation
8
secreted proteins
8
cell
6
genetic determinants
4
biofilm
4
determinants biofilm
4

Similar Publications

EZH2 inhibition induces pyroptosis via RHA-mediated S100A9 overexpression in myelodysplastic syndromes.

Exp Hematol Oncol

January 2025

Department of Hematology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.

Myelodysplastic Syndromes (MDS) represent a group of heterogeneous myeloid clonal diseases derived from aberrant hematopoietic stem/progenitor cells. Enhancer of zeste homolog 2 (EZH2) is an important regulator in gene expression through methyltransferase-dependent or methyltransferase-independent mechanisms. Herein, we found EZH2 inhibition led to MDS cell pyroptosis through RNA Helicase A (RHA) down-regulation induced overexpression of S100A9, a key regulator of inflammasome activation and pyroptosis.

View Article and Find Full Text PDF

Background: Closed head injury (CHI) provokes a prominent neuroinflammation that may lead to long-term health consequences. Microglia plays pivotal and complex roles in neuroinflammation-mediated neuronal insult and repair following CHI. We previously reported that induced neural stem cells (iNSCs) can block the effects of CXCL12/CXCR4 signaling on NF-κB activation in activated microglia by CXCR4 overexpression.

View Article and Find Full Text PDF

Detection of early relapse in multiple myeloma patients.

Cell Div

January 2025

Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.

Background: Multiple myeloma (MM) represents the second most common hematological malignancy characterized by the infiltration of the bone marrow by plasma cells that produce monoclonal immunoglobulin. While the quality and length of life of MM patients have significantly increased, MM remains a hard-to-treat disease; almost all patients relapse. As MM is highly heterogenous, patients relapse at different times.

View Article and Find Full Text PDF

The generation of retinal models from human induced pluripotent stem cells holds significant potential for advancing our understanding of retinal development, neurodegeneration, and the in vitro modeling of neurodegenerative disorders. The retina, as an accessible part of the central nervous system, offers a unique window into these processes, making it invaluable for both study and early diagnosis. This study investigates the impact of the Frontotemporal Dementia-linked IVS 10 + 16 MAPT mutation on retinal development and function using 2D and 3D retinal models derived from human induced pluripotent stem cells.

View Article and Find Full Text PDF

Overproduction of reactive oxygen species (ROS), elevated synovial inflammation, synovial hyperplasia and fibrosis are the main characteristic of microenvironment in rheumatoid arthritis (RA). Macrophages and fibroblast-like synoviocytes (FLSs) play crucial roles in the progression of RA. Hence, synergistic combination of ROS scavenging, macrophage polarization from pro-inflammatory M1 phenotype towards M2 anti-inflammatory phenotype, and restoring homeostasis of FLSs will provide a promising therapeutic strategy for RA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!