Triggering new rounds of chromosomal DNA replication during the bacterial cell cycle is exquisitely regulated, ensuring both proper timing and one round per cycle stringency. A critical first step is stable unwinding of oriC, the chromosomal replication origin, by multiprotein orisome complexes comprising the AAA+ initiator DnaA and modulator proteins that bend DNA. Recently identified oriC-DnaA interactions in Escherichia coli raise important questions regarding the molecular mechanisms that regulate origin unwinding in bacteria. We describe staged binding of E. coli origin recognition proteins and suggest an unwinding switch based on interactions between DnaA-ATP and specialized oriC sites that must be filled during orisome assembly. By focusing multiple regulatory pathways on only a few key oriC DNA-protein interactions, this model includes an efficient way to control unwinding followed by orisome inactivation during the cell cycle. Future studies will determine whether this regulatory scheme is correct and whether it is generally applicable to other bacterial types.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1400601 | PMC |
http://dx.doi.org/10.1111/j.1365-2958.2004.04467.x | DOI Listing |
Nucleic Acids Res
January 2025
Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France.
Large vertebrate genomes duplicate by activating tens of thousands of DNA replication origins, irregularly spaced along the genome. The spatial and temporal regulation of the replication process is not yet fully understood. To investigate the DNA replication dynamics, we developed a methodology called RepliCorr, which uses the spatial correlation between replication patterns observed on stretched single-molecule DNA obtained by either DNA combing or high-throughput optical mapping.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, United States.
The Rep68 protein from Adeno-Associated Virus (AAV) is a multifunctional SF3 helicase that performs most of the DNA transactions necessary for the viral life cycle. During AAV DNA replication, Rep68 assembles at the origin of replication, catalyzing the DNA melting and nicking reactions during the hairpin rolling replication process to complete the second-strand synthesis of the AAV genome. We report the cryo-electron microscopy structures of Rep68 bound to the adeno-associated virus integration site 1 in different nucleotide-bound states.
View Article and Find Full Text PDFMol Cell Proteomics
January 2025
Center for Chromosome Stability, Institute for Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark.
Accurate genome duplication requires a tightly regulated DNA replication program, which relies on the fine regulation of origin firing. While the molecular steps involved in origin firing have been determined predominantly in budding yeast, the complexity of this process in human cells has yet to be fully elucidated. Here, we describe a straightforward proteomics approach to systematically analyse protein recruitment to the chromatin during induced origin firing in human cells.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Türkiye.
Gene II Protein (Gp2/P2) is a nicking enzyme of the M13 bacteriophage that plays a role in the DNA replication of the viral genome. P2 recognizes a specific sequence at the f1 replication origin and nicks one of the strands and starts replication. This study was conducted to address the limitations of previous experiments, improve methodologies, and precisely determine the biochemical activity conditions of the P2 enzyme in vitro.
View Article and Find Full Text PDFBiology (Basel)
December 2024
Division of Biochemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan.
We propose a hypothesis for the simultaneous emergence of bacteria, archaea, viruses, and mobile elements by sequential and concrete biochemical pathways. The emergence process can be considered analogous to crystallization, where genetic and biochemical systems stabilize as organisms evolve from their common ancestor, the LUCA, which was a non-free-living pool of single operon type genomes including double-stranded (ds) DNA at an ancient submarine alkaline vent. Each dsDNA operon was transcribed by different systems in σ, TFIIB, or TBP genomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!