Building a bacterial orisome: emergence of new regulatory features for replication origin unwinding.

Mol Microbiol

Department of Biological Sciences, Florida Institute of Technology, 150 W. University Blvd., Melbourne, FL 32901, USA.

Published: February 2005

Triggering new rounds of chromosomal DNA replication during the bacterial cell cycle is exquisitely regulated, ensuring both proper timing and one round per cycle stringency. A critical first step is stable unwinding of oriC, the chromosomal replication origin, by multiprotein orisome complexes comprising the AAA+ initiator DnaA and modulator proteins that bend DNA. Recently identified oriC-DnaA interactions in Escherichia coli raise important questions regarding the molecular mechanisms that regulate origin unwinding in bacteria. We describe staged binding of E. coli origin recognition proteins and suggest an unwinding switch based on interactions between DnaA-ATP and specialized oriC sites that must be filled during orisome assembly. By focusing multiple regulatory pathways on only a few key oriC DNA-protein interactions, this model includes an efficient way to control unwinding followed by orisome inactivation during the cell cycle. Future studies will determine whether this regulatory scheme is correct and whether it is generally applicable to other bacterial types.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1400601PMC
http://dx.doi.org/10.1111/j.1365-2958.2004.04467.xDOI Listing

Publication Analysis

Top Keywords

replication origin
8
origin unwinding
8
cell cycle
8
unwinding
5
building bacterial
4
orisome
4
bacterial orisome
4
orisome emergence
4
emergence regulatory
4
regulatory features
4

Similar Publications

Large vertebrate genomes duplicate by activating tens of thousands of DNA replication origins, irregularly spaced along the genome. The spatial and temporal regulation of the replication process is not yet fully understood. To investigate the DNA replication dynamics, we developed a methodology called RepliCorr, which uses the spatial correlation between replication patterns observed on stretched single-molecule DNA obtained by either DNA combing or high-throughput optical mapping.

View Article and Find Full Text PDF

Cryo-EM structure of AAV2 Rep68 bound to integration site AAVS1: insights into the mechanism of DNA melting.

Nucleic Acids Res

January 2025

Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, United States.

The Rep68 protein from Adeno-Associated Virus (AAV) is a multifunctional SF3 helicase that performs most of the DNA transactions necessary for the viral life cycle. During AAV DNA replication, Rep68 assembles at the origin of replication, catalyzing the DNA melting and nicking reactions during the hairpin rolling replication process to complete the second-strand synthesis of the AAV genome. We report the cryo-electron microscopy structures of Rep68 bound to the adeno-associated virus integration site 1 in different nucleotide-bound states.

View Article and Find Full Text PDF

Quantitative chromatin protein dynamics during replication origin firing in human cells.

Mol Cell Proteomics

January 2025

Center for Chromosome Stability, Institute for Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark.

Accurate genome duplication requires a tightly regulated DNA replication program, which relies on the fine regulation of origin firing. While the molecular steps involved in origin firing have been determined predominantly in budding yeast, the complexity of this process in human cells has yet to be fully elucidated. Here, we describe a straightforward proteomics approach to systematically analyse protein recruitment to the chromatin during induced origin firing in human cells.

View Article and Find Full Text PDF

Nicking Activity of M13 Bacteriophage Protein 2.

Int J Mol Sci

January 2025

Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Türkiye.

Gene II Protein (Gp2/P2) is a nicking enzyme of the M13 bacteriophage that plays a role in the DNA replication of the viral genome. P2 recognizes a specific sequence at the f1 replication origin and nicks one of the strands and starts replication. This study was conducted to address the limitations of previous experiments, improve methodologies, and precisely determine the biochemical activity conditions of the P2 enzyme in vitro.

View Article and Find Full Text PDF

The Possible Crystallization Process in the Origin of Bacteria, Archaea, Viruses, and Mobile Elements.

Biology (Basel)

December 2024

Division of Biochemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan.

We propose a hypothesis for the simultaneous emergence of bacteria, archaea, viruses, and mobile elements by sequential and concrete biochemical pathways. The emergence process can be considered analogous to crystallization, where genetic and biochemical systems stabilize as organisms evolve from their common ancestor, the LUCA, which was a non-free-living pool of single operon type genomes including double-stranded (ds) DNA at an ancient submarine alkaline vent. Each dsDNA operon was transcribed by different systems in σ, TFIIB, or TBP genomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!