Enchondromas and conventional central chondrosarcomas are, respectively, benign and malignant hyaline cartilage-forming tumours that originate in the medulla of bone. In order to gain a better understanding of the molecular process underlying malignant transformation of enchondroma, and to investigate whether there is a biological difference between conventional central cartilaginous tumours and those of enchondromatosis or with phalangeal localization, a series of 64 enchondromas (phalanx, n = 21; enchondromatosis, n = 15) and 89 chondrosarcomas (phalanx, n = 17; enchondromatosis, n = 13) was collected. Indian Hedgehog (IHH)/parathyroid hormone related peptide (PTHrP) signalling, an important pathway in chondrocyte proliferation and differentiation within the normal growth plate, was studied by immunohistochemical analysis of the expression of PTHrP, PTHR1, Bcl-2, p21, cyclin D1, and cyclin E. Quantitative real-time PCR for IHH, PTCH, SMO, and GLI2 was performed on a subset of tumours. The data show that IHH signalling is absent in enchondromas and central chondrosarcomas, while PTHrP signalling is active. There was no difference in the expression of any of the molecules between 35 enchondromas and 26 grade I central chondrosarcomas, indicating that PTHrP signalling is not important in malignant transformation of enchondroma. Higher expression of PTHR1 and Bcl-2 was associated with increasing histological grade in chondrosarcoma, suggesting involvement in tumour progression. No difference was found between samples from enchondromatosis patients and solitary cases, suggesting no difference in PTHrP signalling. A small subset of phalangeal chondrosarcomas demonstrated down-regulation of PTHrP, which may be related to its more indolent clinical behaviour. Thus, in both enchondromas and central chondrosarcomas, PTHrP signalling is active and independent of IHH signalling, irrespective of the presence or absence of enchondromatosis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/path.1723DOI Listing

Publication Analysis

Top Keywords

pthrp signalling
24
central chondrosarcomas
20
enchondromas central
12
pthrp
8
signalling
8
conventional central
8
malignant transformation
8
transformation enchondroma
8
phalanx enchondromatosis
8
pthr1 bcl-2
8

Similar Publications

Introduction: Pseudohypoparathyroidism 1A (PHP1A) is the best-known representative of inactivating PTH/PTHrP signaling disorders (iPPSD). The associated phenotype develops over time and often includes hormonal resistances, short stature and osteoma cutis. More complex and very early manifestations have also been reported.

View Article and Find Full Text PDF

Heterodisomy in the locus is also a cause of pseudohypoparathyroidism type 1B (iPPSD3).

Front Endocrinol (Lausanne)

December 2024

Rare Disease Research Group, Molecular (Epi) Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital, Vitoria-Gasteiz, Spain.

Objective: To identify the genetic cause underlying the methylation defect in a patient with clinical suspicion of PHP1B/iPPSD3.

Design: Imprinting is an epigenetic mechanism that allows the regulation of gene expression. The locus is one of the loci within the genome that is imprinted.

View Article and Find Full Text PDF

Proliferative behaviours of CD90-expressing chondrocytes under the control of the TSC1-mTOR/PTHrP-nuclear localisation segment pathway.

Osteoarthritis Cartilage

December 2024

Department of Oral Anatomy and Physiology and TMD, College of Stomatology, the Fourth Military Medical University, Xi'an, China; Department of Oral Anatomy and Physiology and TMD, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China. Electronic address:

Objective: Some cells in temporomandibular joint (TMJ) cartilage undergo proliferation in response to negative pressure, which can be induced in vivo by creating bilateral anterior elevation (BAE). TMJ cartilage harbours CD90-expressing cells, and CD90 expression increases under certain controlled conditions. The parathyroid hormone-related peptide (PTHrP) nuclear localisation segment (NLS) promotes chondrocyte proliferation, and mammalian target of rapamycin (mTOR) signalling plays a regulatory role in promoting PTHrP transcription.

View Article and Find Full Text PDF

Timing of resting zone parathyroid hormone-related protein expression affects maintenance of the growth plate during secondary ossification: a computational study.

Biomech Model Mechanobiol

November 2024

Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan.

Secondary ossification and maintenance of the growth plate are crucial aspects of long bone formation. Parathyroid hormone-related protein (PTHrP) has been implicated as a key factor in maintaining the growth plate, and studies suggest that PTHrP expression in the resting zone is closely related with formation of the secondary ossification center (SOC). However, details of the relationship between resting zone PTHrP expression and preservation of the growth plate remain unclear.

View Article and Find Full Text PDF

D-limonene suppresses RANKL-induced osteoclast differentiation and promotes osteoblast activity in-vitro.

Biosci Biotechnol Biochem

November 2024

Agri-pharmacy Group, School of Biomedical Sciences, Faculty of Health, University of Plymouth, Plymouth, UK.

Article Synopsis
  • Osteoporosis treatments are usually implemented after fractures occur, so finding preventative methods to lower fracture risk is important.
  • D-limonene, a natural compound found in citrus fruits, has shown potential in promoting bone health by enhancing osteoblast activity and suppressing osteoclast formation, largely due to its effects on NFκB.
  • The study indicates that limonene not only supports the development of bone-forming cells but also decreases factors that lead to bone loss, suggesting it could be a useful supplement alongside existing osteoporosis treatments.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!