Background And Aims: Inhibitory G-protein-coupled receptors have demonstrated potential in treatment of gastroesophageal reflux disease (GERD) through actions on vagal afferent signaling. Metabotropic glutamate receptors (mGluR) belong to this receptor family and have great pharmacologic and molecular diversity, with 8 subtypes. We investigated mGluR in the vagal system of humans and other species.
Methods: Expression of mGluR1-8 in human, dog, ferret, and rodent nodose ganglia was investigated by reverse-transcription polymerase chain reaction. mGluR1-8 immunohistochemistry was performed in combination with retrograde tracing of vagal afferents from ferret proximal stomach to nodose ganglia. Transport of mGluR peripherally was investigated by vagal ligation, followed by immunohistochemistry. Glutamate receptor pharmacology of ferret and rodent gastroesophageal vagal afferents was investigated by testing single fiber responses to graded mechanical stimuli during drug application to their peripheral endings.
Results: Messenger RNA for several mGluR was detected in the nodose ganglia of all species. Retrograde tracing indicated that ferret gastric vagal afferents express mGluR protein. Accumulation of immunoreactivity proximal to a ligature showed that mGluR were transported peripherally in the vagus nerves. Glutamate (1-30 mumol/L with kynurenate 0.1 mmol/L) concentration dependently inhibited vagal afferent mechanosensitivity. This was mimicked by selective group II and III mGluR agonists but not by a group I agonist. Conversely, a group III mGluR antagonist increased mechanosensitivity to intense stimuli.
Conclusions: Both exogenous and endogenous glutamate inhibits mechanosensitivity of vagal afferents. Group II (mGluR2 and 3) and group III mGluR (mGluR4, 6, 7, 8) are novel targets for inhibition of vagal signaling with therapeutic potential in, for example, GERD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1053/j.gastro.2004.11.062 | DOI Listing |
Am J Physiol Endocrinol Metab
January 2025
Autonomic Physiology Laboratory, Faculty of Life Science and Human Technology, Nara Women's University, Kita-Uoya Nishimachi, Nara, 630-8506, Japan.
The current study aimed to propose a method to directly measure right cervical vagal nerve activity (cVNA) alongside renal sympathetic nerve activity (RSNA) in conscious rats. The right cervical vagus nerve was surgically exposed and fitted with a bipolar electrode to record cVNA. A microcatheter was used to administer levobupivacaine to selectively block afferent cVNA.
View Article and Find Full Text PDFJ Physiol
December 2024
Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA.
Loss of cardiac physiological function following myocardial infarction (MI) is accompanied by neural adaptations in the baroreflex that are compensatory in the short term, but then become associated with long-term disease progression. One marker of these adaptations is decreased baroreflex sensitivity, a strong predictor of post-MI mortality. The relative contributions of cardiac remodelling and neural adaptation in the sensory, central brainstem and peripheral ganglionic loci to baroreflex sensitivity changes remain underexplored.
View Article and Find Full Text PDFBehav Brain Res
March 2025
Faculty of Health Sciences, University of Primorska, Izola, Slovenia. Electronic address:
Energy balance and body weight are tightly regulated by homeostatic and hedonic systems of the brain. These systems are ultimately finely tuned by hypothalamic and extrahypothalamic neurocircuitry that modulate feeding and the appetite signalling cascade. The hypothalamus has been extensively researched and its role in homeostatic regulation of energy balance is well established.
View Article and Find Full Text PDFJ Electrocardiol
January 2025
Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, United States of America.
Neurocardiology is a broad interdisciplinary specialty investigating how the cardiovascular and nervous systems interact. In this brief introductory review, we describe several key aspects of this interaction with specific attention to cardiovascular effects. The review introduces basic anatomy and discusses physiological mechanisms and effects that play crucial roles in the interaction of the cardiovascular and nervous systems, namely: the cardiac neuraxis, the taxonomy of the nervous system, integration of sensory input in the brainstem, influences of the autonomic nervous system (ANS) on heart and vasculature, the neural pathways and functioning of the arterial baroreflex, receptors and ANS effects in the walls of blood vessels, receptors and ANS effects in excitable cells in the heart, ANS effects on heart rate and sympathovagal balance, endo-epicardial inhomogeneity, ANS effects with a balanced vagal and sympathetic stimulation, sympathovagal interaction, arterial baroreflex, baroreflex sensitivity and heart rate variability, arrhythmias and the arterial baroreflex, the cardiopulmonary baroreflex, the exercise pressor reflex, exercise-recovery hysteresis, mental stress, cardiac-cardiac reflexes, the cardiac sympathetic afferent reflex (CSAR), and neuromodulation.
View Article and Find Full Text PDFGastroenterology
December 2024
NYU Pain Research Center, Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York; Department of Cell Biology, NYU Grossman School of Medicine; New York, New York; Department of Pediatrics, NYU Grossman School of Medicine; New York, New York. Electronic address:
Background & Aims: Mood disorders and disorders of gut-brain interaction (DGBI) are highly prevalent, commonly comorbid, and lack fully effective therapies. Although selective serotonin reuptake inhibitors (SSRIs) are first-line pharmacological treatments for these disorders, they may impart adverse effects, including anxiety, anhedonia, dysmotility, and, in children exposed in utero, an increased risk of cognitive, mood, and gastrointestinal disorders. SSRIs act systemically to block the serotonin reuptake transporter and enhance serotonergic signaling in the brain, intestinal epithelium, and enteric neurons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!