AI Article Synopsis

  • The study created a novel plasmid, YPL2-EGFP, to facilitate simultaneous expression of a green fluorescent protein (EGFP) and a neomycin resistance gene in human embryonic stem (HES) cells.
  • Transfected H1 HES cells displayed stable EGFP expression and maintained typical stem cell characteristics even after long-term selection for neomycin resistance.
  • These EGFP-HES cells demonstrated pluripotency by forming teratomas in mice and showed continued EGFP expression during both differentiation and embryoid body formation, highlighting their potential for various research applications.

Article Abstract

The availability of human embryonic stem (HES) cells with a readily evaluated genetic marker such as green fluorescent protein (GFP) could facilitate a number of experimental opportunities. We constructed a novel plasmid with two elongation factor-1alpha (EF-1alpha) promoters (YPL2) to obtain a vector with mammalian promoters for simultaneous transgene expression in HES cells. An enhanced green fluorescent protein (EGFP) cDNA was inserted under the control of the first EF-1alpha promoter to construct plasmid YPL2-EGFP. The second EF1-alpha promoter was upstream of the neomycin resistance gene. H1 HES cells were transfected with YPL2-EGFP using Fugene 6. Following 100 microg/ml neomycin selection, individual colonies demonstrating stable EGFP expression were observed. After 4 months of passage under neomycin selection, the cells continued to maintain typical HES cell morphology. Undifferentiated cells showed no change in EGFP expression as determined by FACS analysis. Immunostaining demonstrated maintenance of Oct-3/4 expression in undifferentiated H1EGFP cells that was indistinguishable from wild-type HES cells. Addition of 10 ng/ml bone morphogenic protein-4 (BMP-4) to the cells provoked morphological and functional differentiation to trophoblasts, but no loss of EGFP expression. Following injection of EGFP-HES cells into immunodeficient mice, there was robust formation of teratomas that demonstrated a broad range of morphological pluripotency with widespread EGFP expression. EGFP expression was also maintained in differentiating embryoid bodies formed from EGFP-HES cells. This report demonstrates that ES cells carrying EGFP will be useful in diverse areas of embryonic stem cell research.

Download full-text PDF

Source
http://dx.doi.org/10.1089/scd.2004.13.636DOI Listing

Publication Analysis

Top Keywords

egfp expression
20
embryonic stem
12
cells
12
green fluorescent
12
fluorescent protein
12
human embryonic
8
stem cells
8
enhanced green
8
neomycin selection
8
egfp-hes cells
8

Similar Publications

Background: Adipose-derived stem cell (ADSC) transplantation presents a promising approach for osteoporosis (OP) treatment. However, the therapeutic efficacy of ADSCs is hindered by low post-transplantation survival rates and limited capacities for adhesion, migration, and differentiation. Icariin (ICA), the primary active compound of Epimedium, has been shown to promote cell proliferation and induce osteogenic differentiation; however, its specific effects on ADSC osteogenesis and the mechanisms by which ICA enhances osteoporosis treatment through cell transplantation remain inadequately understood.

View Article and Find Full Text PDF

Identification and regulation of a novel leptin receptor-linked enhancer during zebrafish ventricle regeneration.

Life Sci

January 2025

TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China. Electronic address:

Aims: Vertebrates vary greatly in their abilities to regenerate injured hearts. Zebrafish possess a remarkable capacity for cardiac regeneration, making them an excellent model for regeneration research. Recent studies have reported the activation and underlying regulatory mechanisms of leptin b (lepb) and the leptin b-linked enhancer (LEN) in injured hearts.

View Article and Find Full Text PDF

Canids act as a crucial intermediary in the transmission of rabies and , serving as co-infection hosts and pathogen carriers for both rabies and hydatid disease (HD) transmitted from animals to humans. Therefore, an effective and efficient bivalent oral vaccine for preventing HD and rabies is urgently required to reduce economic losses in husbandry resulting from rabies and HD. In this study, a full-length plasmid (pcDNA4-NPM+G+EgM123+eGFP+L) carrying the gene and fluorescence reporter genes of eGFP and four auxiliary transfection plasmids of rabies virus SRV (pcDNA4-N, pcDNA4-P, pcDNA4-G, pcDNA-L) were established by reverse genetics approaches and co-transfected to BSR cells by electrotransfection.

View Article and Find Full Text PDF

Decoding Codon Bias: The Role of tRNA Modifications in Tissue-Specific Translation.

Int J Mol Sci

January 2025

Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan.

Article Synopsis
  • The tRNA epitranscriptome plays a crucial role in regulating mRNA translation, but our understanding of its tissue-specific functions is limited.
  • Analyzing seven mouse tissues revealed unique patterns of tRNA modifications, with queuosine (Q) being prominent in the brain and mitochondrial modifications in the heart.
  • By testing a codon-mutated EGFP, researchers found that protein levels varied based on tissue type, highlighting the potential for tailoring gene therapies to enhance their effectiveness in specific tissues or conditions.
View Article and Find Full Text PDF

Optimization of chemical transfection in airway epithelial cell lines.

BMC Biotechnol

January 2025

Centre for Heart Lung Innovation, St. Paul's Hospital, Providence Healthcare Research Institute, University of British Columbia, 1081 Burrard St, Vancouver, BC, V6Z 1Y6, Canada.

Background: Chemical transfection is a widely employed technique in airway epithelium research, enabling the study of gene expression changes and effects. Additionally, it has been explored for its potential application in delivering gene therapies. Here, we characterize the transfection efficiency of EX-EGFP-Lv105, an EGFP-expressing plasmid into three cell lines commonly used to model the airway epithelium (1HAEo-, 16HBE14o-, and NCI-H292).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!