Studies on rodent bone marrow stromal cells (MSCs) have revealed a capacity, for at least a portion of cells, to express neuron-like traits after differentiation in culture. Little, however, is known about the ability of human MSCs in this regard. We show here that incubation with certain differentiation cocktails, particularly those that include reagents that increase cellular cAMP levels, produces a rapid (1-4 h) and transient (24-48 h) transformation of nearly all hMSCs into neuron-like cells displaying a complex network of processes using phase or scanning electron microscopic optics. In addition, differentiated human (h) MSCs express increased quantities of neuron-[beta-tubulin III, neurofilament (NF), neuronal-specific enolase (NSE)] and glial- [glial fibrillary acidic protein (GFAP)] specific proteins and mRNAs, which are also expressed in low levels in undifferentiated MSCs. In contrast, the mesenchymal marker, fibronectin, which is highly expressed in the undifferentiated state, is reduced following differentiation. These biochemical changes, but not the acquisition of a neuron-like appearance, are partially inhibited by incubation of hMSCs with protein (cycloheximide) and mRNA (actinomycin D) synthesis inhibitors with differentiating reagents. Only incubation with 100 ng/ml colchicine, which disrupts the microtubular cytoskeleton, prevents the conversion of hMSCs into neuron- like cells. These results demonstrate that hMSCs acquire the morphological appearance and the biochemical makeup typical of neurons by independently regulated mechanisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1976185 | PMC |
http://dx.doi.org/10.1089/scd.2004.13.625 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!