Hydrophilic polymers, both surfactants and triblock polymers, are known to seal defects in cell membranes. In previous experiments using laboratory animals, we have exploited this capability using polyethylene glycol (PEG) to repair spinal axons after severe, standardized spinal cord injury (SCI) in guinea pigs. Similar studies were conducted using a related co-polymer Poloxamer 188 (P 188). Here we carried out initial investigations of an intravenous application of PEG or P 188 (3500 Daltons, 30% w/w in saline; 2 mL/kg I.V. and 2 mL/kg body weight or 300 mL P 188 per kg, respectively) to neurologically complete cases of paraplegia in dogs. Our aim was to first determine if this is a clinically safe procedure in cases of severe naturally occurring SCI in dogs. Secondarily, we wanted to obtain preliminary evidence if this therapy could be of clinical benefit when compared to a larger number of similar, but historical, control cases. Strict entry criteria permitted recruitment of only neurologically complete paraplegic dogs into this study. Animals were treated by a combination of conventional and experimental techniques within approximately 72 h of admission for spinal trauma secondary to acute, explosive disk herniation. Outcome measures consisted of measurements of voluntary ambulation, deep and superficial pain perception, conscious proprioception in hindlimbs, and evoked potentials (somatosensory evoked potentials [SSEP]). We determined that polymer injection is a safe adjunct to the conventional management of severe neurological injury in dogs. We did not observe any unacceptable clinical response to polymer injection; there were no deaths, nor any other problem arising from, or associated with, the procedures. Outcome measures over the 6-8-week trial were improved by polymer injection when compared to historical cases. This recovery was unexpectedly rapid compared to these comparator groups. The results of this pilot trial provides evidence consistent with the notion that the injection of inorganic polymers in acute neurotrauma may be a simple and useful intervention during the acute phase of the injury.

Download full-text PDF

Source
http://dx.doi.org/10.1089/neu.2004.21.1767DOI Listing

Publication Analysis

Top Keywords

polymer injection
12
paraplegic dogs
8
neurologically complete
8
outcome measures
8
evoked potentials
8
dogs
5
preliminary study
4
study intravenous
4
intravenous surfactants
4
surfactants paraplegic
4

Similar Publications

Background/objectives: The purpose of this study was to develop the gemcitabine-loaded drug-eluting beads (G-DEBs) for transarterial chemoembolization (TACE) in rabbit renal tumors and to evaluate their antitumor effect using 2-deoxy-2-[(18)F]fluoro-D-glucose positron emission tomography/X-ray computed tomography (F-FDG PET/CT).

Methods: DEBs were prepared by polyvinyl alcohol-based macromer crosslinked with -acryl tyrosine and ,'-methylenebis(acrylamide). Gemcitabine was loaded through ion change to obtain G-DEBs.

View Article and Find Full Text PDF

Melt-based 3D printing technologies are currently extensively evaluated for research purposes as well as for industrial applications. Classical approaches often require intermediates, which can pose a risk to stability and add additional complexity to the process. The Advanced Melt Drop Deposition (AMDD) technology, is a 3D printing process that combines the principles of melt extrusion with pressure-driven ejection, similar to injection molding.

View Article and Find Full Text PDF

We focus on optimizing oil displacement in brownfields using alkali polymers (AP) flooding. The goal is to enhance rock-fluid and fluid-fluid interactions to improve oil recovery. The evaluation includes detailed screening of AP mixtures to ensure cost-effectiveness and maximize chemical slug efficiency, using an AP pilot project in Austria as a case study.

View Article and Find Full Text PDF

In this article, we report on the alginate heterografted by Poly(N-isopropyl acrylamide-co-N-tert-butyl acrylamide) and Poly(N-isopropyl acrylamide) (ALG-g-P(NIPAM86-co-NtBAM14)-g-PNIPAM) copolymer thermoresponsive hydrogel, reinforced by substituting part of the 5 wt% aqueous formulation by small amounts of Poly(acrylic acid)-g-P(boc-L-Lysine) (PAA-g-P(b-LL)) graft copolymer (up to 1 wt%). The resulting complex hydrogels were explored by oscillatory and steady-state shear rheology. The thermoresponsive profile of the formulations were affected remarkably by increasing the PAA-g-P(b-LL) component of the polymer blend.

View Article and Find Full Text PDF

Spinal cord trauma leads to the destruction of the highly organized cytoarchitecture that carries information along the axis of the spinal column. Currently, there are no clinically accepted strategies that can help regenerate severed axons after spinal cord injury (SCI). Hydrogels are soft biomaterials with high water content that are widely used as scaffolds to interface with the central nervous system (CNS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!