The tumor antigens simian virus 40 small t antigen (ST) and polyomavirus small and medium T antigens mediate cell transformation in part by binding to the structural A subunit of protein phosphatase 2A (PP2A). The replacement of B subunits by tumor antigens inhibits PP2A activity and prolongs phosphorylation-dependent signaling. Here we show that ST mediates PP2A A/C heterodimer transfer onto the ligand-activated androgen receptor (AR). Transfer by ST is strictly dependent on the agonist-activated conformation of AR, occurs within minutes of the addition of androgen to cells, and can occur in either the cytoplasm or the nucleus. The binding of ST changes the conformation of the A subunit, and ST rapidly dissociates from the complex upon PP2A A/C heterodimer binding to AR. PP2A is transferred onto the carboxyl-terminal half of AR, and the phosphatase activity is directed to five phosphoserines in the amino-terminal activation function region 1, with a corresponding reduction in transactivation. Thus, ST functions as a transfer factor to specify PP2A targeting in the cell and modulates the transcriptional activity of AR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC548022PMC
http://dx.doi.org/10.1128/MCB.25.4.1298-1308.2005DOI Listing

Publication Analysis

Top Keywords

simian virus
8
virus small
8
small antigen
8
protein phosphatase
8
androgen receptor
8
tumor antigens
8
pp2a a/c
8
a/c heterodimer
8
pp2a
6
antigen mediates
4

Similar Publications

Broadly neutralizing antibodies (bnAbs) against HIV-1 have been shown to protect from systemic infection. When employing a novel challenge virus that uses HIV-1 Env for entry into target cells during the first replication cycle, but then switches to SIV Env usage, we demonstrated that bnAbs also prevented mucosal infection of the first cells. However, it remained unclear whether antibody Fc-effector functions contribute to this sterilizing immunity.

View Article and Find Full Text PDF

[Methods to Increase the Efficiency of Knock-in of a Construct Encoding the HIV-1 Fusion Inhibitor, MT-C34 Peptide, into the CXCR4 Locus in the CEM/R5 T Cell Line].

Mol Biol (Mosk)

December 2024

Center of Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia.

The low knock-in efficiency, especially in primary human cells, limits the use of the genome editing technology for therapeutic purposes, rendering it important to develop approaches for increasing the knock-in levels. In this work, the efficiencies of several approaches were studied using a model of knock-in of a construct coding for the peptide HIV fusion inhibitor MT-C34 into the human CXCR4 locus in the CEM/R5 T cell line. First, donor DNA modification was evaluated as a means to improve the efficiency of plasmid transport into the nucleus.

View Article and Find Full Text PDF

We obtained the near-complete simian foamy virus (SFV) genome from an infected human bitten by an African green monkey ( SFVcae_hu501). The genome is 13,062 nucleotides long with the classical SFV genome structure. Phylogenetically, SFVcae_hu501 clustered closely with SFV from (SFVagm_LK3).

View Article and Find Full Text PDF

Polyomaviruses and the risk of oral cancer: a systematic review and meta-analysis.

BMC Oral Health

December 2024

Gastrointestinal Cancer Research Center, Non-Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran.

Objectives: Oral cancer (OC) is the most common malignant tumor of the head and neck (HN) and ranks 16th among the most frequently diagnosed cancers worldwide. A systematic review and meta-analysis aimed to provide an evidence-based analysis of the relationship between polyomaviruses and oral cancer.

Methods: The global online databases was used to identify relevant studies published between January 2000 and September 2024.

View Article and Find Full Text PDF

Polyomavirus large T antigens: Unraveling a complex interactome.

Tumour Virus Res

December 2024

Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA. Electronic address:

All members of the polyomavirus family encode a large T antigen (LT) protein that plays essential roles in viral DNA replication, regulation of viral gene expression, and the manipulation of numerous cellular pathways. Over 100 polyomaviruses have been discovered in hosts ranging from arthropods and fish to mammals, including fourteen that infect humans. LT is among the most studied viral proteins with thousands of articles describing its functions in viral productive infection and tumorigenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!