During infection of Arabidopsis thaliana, the bacterium Pseudomonas syringae pv tomato delivers the effector protein AvrRpt2 into the plant cell cytosol. Within the plant cell, AvrRpt2 undergoes N-terminal processing and causes elimination of Arabidopsis RIN4. Previous work established that AvrRpt2 is a putative cysteine protease, and AvrRpt2 processing and RIN4 elimination require an intact predicted catalytic triad in that AvrRpt2. In this work, proteolytic events that depend on AvrRpt2 activity were characterized. The amino acid sequence surrounding the processing site of AvrRpt2 and two related sequences from RIN4 triggered Avr-Rpt2-dependent proteolytic cleavage of a synthetic substrate, demonstrating that these sequences are cleavage recognition sites for AvrRpt2 activity. Processing-deficient AvrRpt2 mutants were identified and shown to retain their ability to eliminate wild-type RIN4. Single amino acid substitutions were made in each of the two RIN4 cleavage sites, and mutation of both sites resulted in cleavage-resistant RIN4. Growth of Pseudomonas expressing AvrRpt2 was significantly higher than catalytically inactive mutants on Arabidopsis rin4/rps2 mutant plants, suggesting there are additional protein targets of AvrRpt2 that account for the virulence activity of this effector. Bioinformatics analysis identified putative Arabidopsis proteins containing sequences similar to the proteolytic cleavage sites conserved in AvrRpt2 and RIN4. Several of these proteins were eliminated in an AvrRpt2-dependent manner in a transient in planta expression system. These results identify amino acids important for AvrRpt2 substrate recognition and cleavage as well as demonstrate AvrRpt2 protease activity eliminates multiple Arabidopsis proteins in a transient expression system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC548309PMC
http://dx.doi.org/10.1073/pnas.0409468102DOI Listing

Publication Analysis

Top Keywords

avrrpt2
15
proteolytic cleavage
12
cleavage sites
12
pseudomonas syringae
8
plant cell
8
avrrpt2 activity
8
amino acid
8
arabidopsis proteins
8
expression system
8
rin4
7

Similar Publications

Comparative analysis on natural variants of fire blight resistance protein FB_MR5 indicates distinct effector recognition mechanisms.

Mol Cells

August 2024

Plant Immunity Research Center, Seoul National University, Seoul 08826, Republic of Korea; Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:

FB_MR5 is a nucleotide-binding domain and leucine-rich repeat protein identified from wild apple species Malus × robusta 5 conferring disease resistance to bacterial fire blight. FB_MR5 (hereafter MrMR5) recognizes the cysteine protease effector EaAvrRpt2 secreted from the causal agent of bacterial fire blight, Erwinia amylovora. We previously reported that MrMR5 is activated by the C-terminal cleavage product (ACP3) of Malus domestica RIN4 (MdRIN4) produced by EaAvrRpt2-directed proteolysis.

View Article and Find Full Text PDF

Decomposition of dynamic transcriptomic responses during effector-triggered immunity reveals conserved responses in two distinct plant cell populations.

Plant Commun

August 2024

Department of Plant and Microbial Biology, University of Minnesota - Twin Cities, St Paul, MN 55108, USA; Bioinformatics and Computational Biology Graduate Program, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA. Electronic address:

Rapid plant immune responses in the appropriate cells are needed for effective defense against pathogens. Although transcriptome analysis is often used to describe overall immune responses, collection of transcriptome data with sufficient resolution in both space and time is challenging. We reanalyzed public Arabidopsis time-course transcriptome data obtained after low-dose inoculation with a Pseudomonas syringae strain expressing the effector AvrRpt2, which induces effector-triggered immunity in Arabidopsis.

View Article and Find Full Text PDF

The RIN4-like/NOI proteins NOI10 and NOI11 modulate the response to biotic stresses mediated by RIN4 in Arabidopsis.

Plant Cell Rep

February 2024

Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, 20223, Madrid, Spain.

NOI10 and NOI11 are two RIN4-like/NOI proteins that participate in the immune response of the Arabidopsis plant and affect the RIN4-regulated mechanisms involving the R-proteins RPM1 and RPS2. The immune response in plants depends on the regulation of signaling pathways triggered by pathogens and herbivores. RIN4, a protein of the RIN4-like/NOI family, is considered to be a central immune signal in the interactions of plants and pathogens.

View Article and Find Full Text PDF

Plant U-box E3 ligases PUB20 and PUB21 are flg22-triggered signaling components and negatively regulate immune responses. Plant U-box proteins (PUBs) constitute a class of E3 ligases that are associated with various stress responses. Among the class IV PUBs featuring C-terminal Armadillo (ARM) repeats, PUB20 and PUB21 are closely related homologs.

View Article and Find Full Text PDF

Quantitative Trait Locus Mapping for Fire Blight Resistance in an F Population of MAL0045 Uncovers Novel Resistance Loci.

Phytopathology

December 2023

Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Pillnitzer Platz 3a, 01326 Dresden, Germany.

Several fire blight resistance loci in genotypes map on different linkage groups (LGs) representing chromosomes of the domesticated apple. Prior genetics studies primarily focused on F populations. A strong resistance quantitative trait locus (QTL) explained up to 66% of phenotypic variance in an F progeny derived from crossing the highly resistant wild apple genotype MAL0045 and the highly susceptible apple cultivar 'Idared', which was previously mapped on LG10 () of MAL0045.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!