Fate of oxytetracycline in streams receiving aquaculture discharges: model simulations.

Environ Toxicol Chem

River Studies Center, University of Wisconsin, La Crosse, Wisconsin 54601, USA.

Published: January 2005

The potential aquatic fate of oxytetracycline (OTC) in streams receiving discharge from fish hatcheries was examined using the Water-Quality Analysis Simulation Program (WASP, Ver 6.1) model. The modeled 4.4-km stream network included a settling pond, a receiving segment, and two downstream segments. Attainment of quasi-steady state concentrations (concentration variation, <7.5 mg kg(-1)) in the sediment layers of the receiving segment and first downstream segment required several years. Median water-column concentrations (truly dissolved and colloid- and particle-associated) were 0, 0.57, 0.80, and 0.83 ng L(-1) in the settling pond, receiving segment, first downstream segment, and second downstream segment. Truly dissolved fractions in the water column during dosing were 16% in the settling pond, 64% in the receiving segment, and approximately 78% in the river segments. Concentrations declined 20- to 400-fold, depending on the segment considered, within 1 d of dosing. Truly dissolved fractions in the water column after cessation of dosing were 96% in the settling pond and approximately 78% in the river segments. Expected sediment-bound concentrations were approximately 4 mg kg(-1) in the receiving segment during dosing, with a median annual concentration of approximately 1.5 mg kg(-1) . Expected concentrations in downstream sediments were 0.2 mg kg(-1) or less. Sensitivity analyses indicated the most important factors influencing fate under the hydrodynamic conditions simulated were settling-pond biosolids load, biosolids settling velocity, OTC depuration kinetics from biosolids, and OTC river particle-water distribution coefficient(s).

Download full-text PDF

Source
http://dx.doi.org/10.1897/03-640.1DOI Listing

Publication Analysis

Top Keywords

fate oxytetracycline
8
streams receiving
8
oxytetracycline streams
4
receiving aquaculture
4
aquaculture discharges
4
discharges model
4
model simulations
4
simulations potential
4
potential aquatic
4
aquatic fate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!