Study Objectives: The sleep disorder narcolepsy is now considered a neurodegenerative disease because there is a massive loss of neurons containing the neuropeptide, hypocretin, and because narcoleptic patients have very low cerebrospinal fluid levels of hypocretin. Transplants of various cell types have been used to induce recovery in a variety of neurodegenerative animal models. In models such as Parkinson disease, cell survival has been shown to be small but satisfactory. Currently, there are no data indicating whether hypocretin neurons can survive when grafted into host tissue. Here we examined the survival of hypocretin-containing neurons grafted into the pontine reticular formation, a region traditionally regarded to be key for rapid eye movement sleep generation.
Design: In 2 experiments, a suspension of cells from the posterior hypothalamus of 8- to 10-day old rat pups was injected into the pons (midline, at the level of the locus coeruleus) of adult rats. Control rats received cells from the cerebellum, tissue that is devoid of hypocretin neurons. In the first experiment (n = 33), the adult rats were sacrificed 1, 3, 6, 12, 24, or 36 days after transplant, and cryostat-cut coronal sections of the brainstem were examined for presence of hypocretin-immunoreactive neurons. In the second experiment (n = 9), the transplant medium was modified to include agents that stimulate cell growth, and recipient rats were sacrificed 9, 12, and 36 days after receiving the graft.
Settings: Basic neuroscience research laboratory.
Measurements And Results: In the first experiment, clearly defined hypocretin-immunoreactive containing somata and varicosities were visible in pons of rats sacrificed 1 day after grafting of posterior hypothalamic cells but not in rats receiving cerebellum tissue. The hypocretin-immunoreactive somata were not visible in rats sacrificed at 12, 24, or 36 days, indicating that the neurons had died. However, in the second experiment, where enriched transplant medium was used, clearly defined hypocretin-immunoreactive somata with processes and varicosities were present in the graft zone 36 days after implant. These somata were similar in size and appearance to adult rat hypocretin-immunoreactive neurons.
Conclusions: These results indicate that hypocretin neurons obtained from rat pups can be grafted into a host brain, and efforts should be made to increase survival of these neurons.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1201562 | PMC |
http://dx.doi.org/10.1093/sleep/27.8.1465 | DOI Listing |
Int J Mol Sci
December 2024
A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia.
Sleep is the most important physiological function of all animals studied to date. Sleep disorders include narcolepsy, which is characterized by excessive daytime sleepiness, disruption of night sleep, and muscle weakness-cataplexy. Narcolepsy is known to be caused by the degeneration of orexin-synthesizing neurons (hypocretin (HCRT) neurons or orexin neurons) in the hypothalamus.
View Article and Find Full Text PDFBrain Res
December 2024
Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China. Electronic address:
Since the discovery of orexin/hypocretin, numerous studies have accumulated evidence demonstrating its key role in various aspects of neuromodulation, including addiction, motivation, and arousal. This paper focuses on the projection of orexin neurons to specific target brain regions through distinct neural pathways to regulate sleep and arousal. We provide a detailed discussion of the projection mechanisms of orexin neurons to downstream neurons, particularly emphasizing their activation of monoaminergic and cholinergic neurons associated with arousal.
View Article and Find Full Text PDFSleep Sci
December 2024
Departamento de Psicobiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
Melanin-concentrating hormone (MCH) and hypocretins (Hcrt) 1 and 2 are neuropeptides synthesized in the lateral hypothalamic area by neurons that are critical in the regulation of sleep and wakefulness. Their receptors are located in the same cerebral regions, including the frontal cortex and hippocampus. The present study aimed to assess whether 96 hours of paradoxical sleep deprivation alters the functioning of the MCH and hypocretin systems.
View Article and Find Full Text PDFVet J
December 2024
College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China. Electronic address:
During the periparturient period, dairy cows experience negative energy balance due to reduced feed intake, leading to adipose tissue breakdown, liver damage, and fat accumulation. This study examined the gut-liver-brain axis to explore the link between fatty liver disease, changes in hypothalamic appetite-related neurons, and microbiome shifts in dairy cows. Thirty cows were monitored, with daily DMI recordings and blood sampling.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Immunology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471003, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!