The B7 homolog B7-H3 is important for the regulation of immune responses though its functions in vivo are controversial. We report the first clinical and experimental data concerning expression and function of B7-H3 in alloresponses. Immunohistological and molecular analyses showed B7-H3 expression by cells mediating rejection of human and mouse allografts. To analyze the significance of B7-H3 in rejecting allografts, we generated B7-H3-/- mice and showed that targeting of B7-H3 was synergistic with other forms of immune modulation; e.g. a regimen of rapamycin gave 12-14 days of survival in wild-type controls but led to permanent cardiac and islet allograft survival in B7-H3-/- mice. Cardiac allografts in treated B7-H3-/- mice showed markedly decreased production of key cytokine, chemokine and chemokine receptor mRNA transcripts as compared to wild-type controls. The incidence of chronic rejection in two different cardiac allograft models was also inhibited in B7-H3-/- as compared to wild-type recipients. Lastly, in addition to the expected antigen-presenting cell expression of B7-H3, CD4 and CD8 T cells showed B7-H3 induction upon cell activation, and both dendritic cell- and T cell-expressed B7-H3 each enhanced T cell proliferation in vitro and in vivo. We conclude that B7-H3 promotes T cell-mediated immune responses and the development of acute and chronic allograft rejection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/eji.200425518 | DOI Listing |
Mol Pharm
December 2024
National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an attractive candidate for anticancer therapeutics due to its efficient pro-apoptotic activity against tumor cells and its well-tolerated safety profile. However, the in vivo antitumor efficacy of TRAIL is often limited by its poor tumor targeting capacity. Nowadays, the B7 homologue 3 (B7-H3) immune checkpoint has emerged as a promising target for tumor immunotherapy and drug delivery.
View Article and Find Full Text PDFJ Immunother Cancer
November 2024
Translational Oncology Research Center (TORC), Department of Biomedical Sciences, Laboratory for Molecular and Cellular Therapy (LMCT), Vrije Universiteit Brussel, Brussels, Belgium.
Background: Glioblastoma is the most common lethal primary brain tumor, urging evaluation of new treatment options. Chimeric antigen receptor (CAR)-T cells targeting B7 homolog 3 (B7-H3) are promising because of the overexpression of B7-H3 on glioblastoma cells but not on healthy brain tissue. Nanobody-based (nano)CARs are gaining increasing attention as promising alternatives to classical single-chain variable fragment-based (scFv)CARs, because of their single-domain nature and low immunogenicity.
View Article and Find Full Text PDFClin Transl Oncol
November 2024
Institute of Clinical Medicine, the Second Affiliated Hospital of Hainan Medical University, 368 Yehai Avenue, Haikou, 570311, Hainan, China.
Mol Immunol
December 2024
Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China. Electronic address:
Cancer Med
October 2024
State Key Laboratory of Ultrasound in Medicine and Engineering, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
Background: High-intensity focused ultrasound (HIFU) is a promising minimally invasive treatment for liver cancer; however, its efficacy is often limited by the attenuation of ultrasonic energy. This study investigates the effectiveness of B7-H3-targeted microbubbles (T-MBs) in enhancing HIFU ablation of liver cancer and explores their potential for clinical translation.
Methods: T-MBs and isotype control microbubbles (I-MBs) were synthesized through the conjugation of biotinylated anti-B7-H3 antibody and isotype control antibody to the microbubble surface, respectively.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!