A mitochondrial mutator system in maize.

Plant Physiol

University of Missouri, Columbia, Missouri 65211, USA.

Published: February 2005

The P2 line of maize (Zea mays) is characterized by mitochondrial genome destabilization, initiated by recessive nuclear mutations. These alleles alter copy number control of mitochondrial subgenomes and disrupt normal transfer of mitochondrial genomic components to progeny, resulting in differences in mitochondrial DNA profiles among sibling plants and between parents and progeny. The mitochondrial DNA changes are often associated with variably defective phenotypes, reflecting depletion of essential mitochondrial genes. The P2 nuclear genotype can be considered a natural mutagenesis system for maize mitochondria. It dramatically accelerates mitochondrial genomic divergence by increasing low copy-number subgenomes, by rapidly amplifying aberrant recombination products, and by causing the random loss of normal components of the mitochondrial genomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1065377PMC
http://dx.doi.org/10.1104/pp.104.053611DOI Listing

Publication Analysis

Top Keywords

mitochondrial
9
system maize
8
mitochondrial genomic
8
mitochondrial dna
8
mitochondrial mutator
4
mutator system
4
maize maize
4
maize zea
4
zea mays
4
mays characterized
4

Similar Publications

Sexual Dimorphism in Migraine. Focus on Mitochondria.

Curr Pain Headache Rep

January 2025

Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, 09-420, Plock, Poland.

Purpose Of Review: Migraine prevalence in females is up to 3 times higher than in males and females show higher frequency, longer duration, and increased severity of headache attacks, but the reason for that difference is not known. This narrative review presents the main aspects of sex dimorphism in migraine prevalence and discusses the role of sex-related differences in mitochondrial homeostasis in that dimorphism. The gender dimension is also shortly addressed.

View Article and Find Full Text PDF

Karst caves, formed from the dissolution of soluble rocks, are characterized by the absence of photosynthetic activity and low levels of organic matter. Organisms evolve under these particular conditions, which causes high levels of endemic biodiversity in both macroorganism and microbes. Recent research has highlighted the presence of testate amoebae (Arcellinida) group in cave environments.

View Article and Find Full Text PDF

Burn-induced mitochondrial dysfunction in hepatocytes: The role of methylation-controlled J protein silencing.

J Trauma Acute Care Surg

January 2025

From the Division of Gastrointestinal, Trauma, and Endocrine Surgery, Department of Surgery (A.P., K.M.M., A.C.Q., E.J.K., J.-P.I.), Division of Burn Research (E.J.K.), and Division of Alcohol Research (E.J.K.), Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado.

Background: Burn injuries trigger a systemic hyperinflammatory response, leading to multiple organ dysfunction, including significant hepatic damage. The liver plays a crucial role in regulating immune responses and metabolism after burn injuries, making it critical to develop strategies to mitigate hepatic impairment. This study investigates the role of methylation-controlled J protein (MCJ), an inner mitochondrial protein that represses complex I in burn-induced oxidative stress and mitochondrial dysfunction, using an in vitro Alpha Mouse Liver 12 cell model.

View Article and Find Full Text PDF

Background: Mitochondrial function influences Parkinson's disease (PD) through the accumulation of pathogenic alpha-synuclein, oxidative stress, impaired autophagy, and neuroinflammation. The mitochondrial DNA copy number (mtDNA-CN), representing the number of mitochondrial DNA copies within a cell, serves as an easily assessable proxy for mitochondrial function.

Objective: This study aimed to assess the diagnostic and prognostic capabilities of mtDNA-CN in PD.

View Article and Find Full Text PDF

Inherited metabolic disorders (IMDs) pose various obstetric challenges. In this study investigates the prenatal and perinatal profiles of pregnancies affected by IMDs and examines their obstetric outcomes. The most frequently observed antepartum issues identified among 996 patients with IMDs were intrauterine growth restriction (IUGR), intrauterine microcephaly and oligohydramnios.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!