Jets and winds are significant channels for energy loss from accreting black holes. These outflows mechanically heat their surroundings, through shocks as well as gentler forms of heating. We discuss recent efforts to understand the nature and distribution of mechanical heating by central active galactic nuclei (AGN) in clusters of galaxies, using numerical simulations and analytic models. Specifically, we will discuss whether the relatively gentle 'effervescent heating' mechanism can compensate for radiative losses in the central regions of clusters, and account for the excess entropy observed at larger radii. J. Binney discusses the possible role of violent, episodic heating by AGN in clusters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1098/rsta.2004.1518 | DOI Listing |
Phys Rev Lett
December 2024
Massachusetts Institute of Technology, Research Laboratory of Electronics, Cambridge, Massachusetts 02139, USA.
Classical transport of electrons and holes in nanoscale devices leads to heating that severely limits performance, reliability, and efficiency. In contrast, recent theory suggests that interband quantum tunneling and subsequent thermalization of carriers with the lattice results in local cooling of devices. However, internal cooling in nanoscale devices is largely unexplored.
View Article and Find Full Text PDFFaithful quantum state transfer between telecom photons and microwave frequency mechanical oscillations necessitate a fast conversion rate and low thermal noise. Two-dimensional (2D) optomechanical crystals (OMCs) are favorable candidates that satisfy those requirements. 2D OMCs enable sufficiently high mechanical frequency (1∼10 GHz) to make the resolved-sideband regime achievable, a prerequisite for many quantum protocols.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China. Electronic address:
Pathogen nucleic acid detection technology based on isothermal amplification and CRISPR/Cas12a system offers advantages in terms of high sensitivity, high specificity, and rapidity. However, this method has not been widely applied because of its shortcomings in utilizing conventional instruments, which cannot satisfy the requirements for Point of Care Testing (POCT), such as integration, convenience, and miniaturization. In this study, we developed an integrated lift-heater centrifugal microfluidic platform (Lift-CM) to automate the processes of isothermal amplification and CRISPR/Cas12a detection.
View Article and Find Full Text PDFActa Bioeng Biomech
June 2024
4Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Wrocław, Poland.
: Caries or iatrogenic thermal trauma of the teeth have a significant impact on the dental pulp structure connected with stimulation of angiogenesis and lymphangiogenesis. Therefore, the aim of the study was to identify the difference in the rate of heat dissipation by vessels present in the dental pulp. : Freshly extracted healthy ( = 10) and carious ( = 14) molars and premolars were cut on a diamond saw and subjected to active thermographic examination and then subjected to lymphoscintigraphy and X-ray examination.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemical Engineering, Myongji University, Yongin 17058, Republic of Korea.
Liquid metals (LMs), i.e., metals and alloys that exist in a liquid state at room temperature, have recently attracted considerable attention owing to their electronic and rheological properties useful in various cutting-edge technologies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!