Potentiometric sensor for dipicolinic acid.

Biosens Bioelectron

Polymer Research Institute, Polytechnic University, Six Metrotech Center, Brooklyn, NY 11201-3840, USA.

Published: March 2005

A potentiometric chemosensor for selective determination of dipicolinic acid (2,6-pyridinedicarboxylic acid, DPA) was developed based on the surface imprinting technique coupled with a nanoscale transducer: an indium tin oxide (ITO)-coated glass plate. The sensor fabrication conditions, optimal recognition condition, as well as selectivity, sensitivity, and stability of the DPA sensor have been investigated. The DPA sensor could recognize DPA from 3,5-pyridinedicarboxylic acid. Potentiometric measurements demonstrated selective detection of DPA in a concentration range of 1.5 x 10(-6) to 0.0194 M. The response time of DPA sensor for 4 x 10(-4) M DPA was 25 s. The potentiometric response of the DPA sensor to DPA is at 90% of its initial magnitude after 550 times measurement. The viability of such a modified ITO electrode in the presence of other inorganic, organic, and biological materials was probed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2004.05.005DOI Listing

Publication Analysis

Top Keywords

dpa sensor
16
dpa
9
dipicolinic acid
8
acid potentiometric
8
sensor
5
potentiometric
4
potentiometric sensor
4
sensor dipicolinic
4
acid
4
potentiometric chemosensor
4

Similar Publications

A Stable Zn(II) Metal-Organic Framework as Turn-On and Blue-Shift Fluorescence Sensor for Amino Acids and Dipicolinic Acid in Living Cells or Using Aerosol Jet Printing.

Inorg Chem

January 2025

School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China.

Amino acids and dipicolinic acid (DPA) are important biomarkers for identifying human health. Establishing rapid, accurate, sensitive, and simple assays is essential for disease prevention and early diagnosis. In this work, a novel Zn(II) metal-organic framework (MOF) with the formula {[Zn(μ-OH)(BTDI)(dpp)]·dpp·4HO·2DMF} (, where denotes Jiangxi University of Science and Technology, HBTDI = 5,5'-(benzo[][1,2,5]thiadiazole-4,7-diyl)diisophthalic acid; dpp = 1,3-di(4-pyridyl)propane) was successfully synthesized via a mixed-ligands strategy.

View Article and Find Full Text PDF

Nanocellulose composites based on embedded europium-containing coordination polymers for the detection of antibiotics.

Int J Biol Macromol

January 2025

State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, PR China; Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China; China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin University of Science and Technology, Tianjin 300457, PR China. Electronic address:

Developing sensitive and reliable methods for detecting antibiotics in water solutions is essential for protecting public health and the environment. Here, we report a novel fluorescent film with superior mechanical properties and detection response to ciprofloxacin (CIP), achieved through the in-situ growth of europium-based metal-organic frameworks on TEMPO-oxidized cellulose nanofibrils (TOCNF). Firstly, Eu(III) and 2,6-pyridinedicarboxylic acid (DPA) served as precursors, and a simple self-assembly strategy was employed to grow the composite film material (Eu-DPA@TOCNF) in situ on TOCNF, which exhibited characteristic emission peaks.

View Article and Find Full Text PDF

The detection of trace quantities of 2,6-dipicolinic acid (DPA) in real-world samples is crucial for early disease diagnosis and routine health monitoring. Metal-organic frameworks (MOFs), recognized for their diverse structural architectures, have emerged as advanced multifunctional hybrid materials. One of the most notable properties of MOFs is their luminescence (L), which can arise from structural ligands, guest molecules, and emissive metal ions.

View Article and Find Full Text PDF

A ratiometric fluorescent sensing foil for high resolution 2D pH measurement based on a novel hydroxy-pyrene green fluorophore.

Talanta

March 2025

State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China. Electronic address:

The pH of environmental systems plays a crucial role in determining pollutant behavior, necessitating the development of effective tools for real-time monitoring. This study introduces a novel series of lipophilic HPTS derivatives, developed through a two-step synthesis route, designed as pH-sensitive dyes, characterized by high fluorescence intensity, photostability, dual excitation/single emission, and significant Stokes shifts. We engineered self-ratiometric pH-sensing planar optode foils and investigated the impact of carbon chain length on foil durability.

View Article and Find Full Text PDF

Rapid and simple fluorescent detection of chlorogenic acid in Aidi injection using aggregation-induced emission (AIE) nanoclusters.

J Pharm Biomed Anal

February 2025

Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research of China, Jinan University, Guangzhou 510632, China. Electronic address:

Article Synopsis
  • Chlorogenic acid (CGA) is crucial in Aidi injection for its anti-cancer effects, making its accurate detection important for treatment monitoring.
  • A new fluorescent detection method using DPA-capped bimetallic gold/copper nanoclusters (DPA-Au/CuNCs) is introduced, which shows rapid response and sensitivity to CGA levels in the injection.
  • This method effectively identifies CGA in Aidi injection and plasma with high recovery rates, suggesting its usefulness in pharmaceutical and clinical settings.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!