Diblock PEG-p(CL-co-TMC) [methoxypoly(ethylene glycol)-poly(caprolactone/trimethylene carbonate)] copolymers form micelles spontaneously and significantly increase the solubility of poorly water-soluble drugs. The aim of this work was to assess these diblock copolymers as oral drug delivery systems in both in vitro and in vivo experiments using risperidone as a model drug. The permeation of risperidone through Caco-2 cell monolayers showed that the apparent permeation coefficient (Papp) was slightly reduced when risperidone was formulated with the copolymer. Based on the higher apparent drug solubility, the copolymer increased drug flux or the total amount of drug which crossed the Caco-2 monolayers. The Papp of the micelle formulation was higher at 37 degrees C than at 4 degrees C. After oral administration to rats, the pharmacokinetic parameters and the pharmacological effect were evaluated. Time courses of receptor occupancy by risperidone after oral administration were similar when risperidone was encapsulated in PEG-p(CL-co-TMC) micelles or solubilized in an aqueous tartaric acid vehicle. The areas under the curve (AUC) were not significantly different although the maximal concentration (Cmax) was twofold lower with the copolymer. The polymeric micelles of PEG-p(CL-co-TMC) seem to be a good candidate for oral drug delivery of poorly soluble drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2004.10.022DOI Listing

Publication Analysis

Top Keywords

copolymers oral
8
water-soluble drugs
8
oral drug
8
drug delivery
8
oral administration
8
risperidone
6
drug
6
oral
5
self-assembling peg-pcl-co-tmc
4
peg-pcl-co-tmc copolymers
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!