The cysteine residues of the hepatitis B virus onco-protein HBx are not required for its interaction with RNA or with human p53.

Virus Res

Centro de Biologia Molecular Estrutural, Laboratório Nacional de Luz Síncrotron, Rua Giuseppe Máximo Scolfaro 10.000, CP 6192, Campinas, SP, CEP 13084-971, Brazil.

Published: March 2005

AI Article Synopsis

Article Abstract

The hepatitis B virus (HBV) protein HBx has been implicated to induce liver cancer in transgenic mice and transactivates a variety of viral and cellular promoters. The 17 kDa protein HBx consists of 154 amino acids, contains 10 cysteine residues and is translated during the viral infection. It has been shown previously that the HBx protein is able to bind to singlestranded DNA and RNA. This nucleic acid binding activity might be relevant for HBx oncogenic character. Furthermore, HBx has been reported to interact with a series of cellular proteins, especially with transcription factors, including the tumor suppressor protein p53. To evaluate the importance of the cysteine residues in HBx for its interaction with RNA and p53 we expressed full-length HBx-wt as well as several truncated mini-HBx(18-142) proteins with multiple cysteine to serine point mutations as 6xHis fusion proteins in Escherichia coli. Using UV cross-linking assays we demonstrate that all truncated mini-HBx proteins with cysteine/serine point mutations maintained the ability to bind to an AU-38 RNA oligonucleotide. Furthermore, we performed in vitro binding assays of selected HBx mutants with GST-p53, circular dichroism spectroscopic analysis of the mutant HBx protein secondary structure and a p53 based transcription activation assay in yeast cells. In summary, our data suggest that the cysteine residues in the HBx protein are of minor importance for its interaction with both RNA and the p53 protein.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.virusres.2004.08.018DOI Listing

Publication Analysis

Top Keywords

cysteine residues
16
interaction rna
12
hbx protein
12
hbx
10
hepatitis virus
8
protein hbx
8
residues hbx
8
rna p53
8
point mutations
8
protein
7

Similar Publications

Plant Antimicrobial Peptides and Their Main Families and Roles: A Review of the Literature.

Curr Issues Mol Biol

December 2024

Laboratório de Fisiologia e Bioquímica de Microrganismos, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Rio de Janeiro 28013-602, Brazil.

Antimicrobial peptides (AMPs) are constituent molecules of the innate defense system and are naturally produced by all organisms. AMPs are characterized by a relatively low molecular weight (less than 10 kDa) and a variable number of cysteine residues that form disulfide bonds and contribute to the stabilization of the tertiary structure. In addition, there is a wide repertoire of antimicrobial agents against bacteria, viruses, fungi, and protozoa that can provide a large number of prototype peptides for study and biochemical manipulation.

View Article and Find Full Text PDF

Plant-Scale Circular Economy Using Biological Reuse of Electrolyte Residues in the Amino Acid Industry.

Bioengineering (Basel)

December 2024

CJ BIO Research Institute, CJ CheilJedang Corp., Suwon-si 16495, Gyeonggi-do, Republic of Korea.

The amino acid industry generates significant amounts of electrolyte residues, such as ammonium sulfate, acetic acid, and phosphoric acid, which cause challenges to sustainability. This short article investigates the feasibility of implementing a plant-scale circular economy through the recycling and biological reuse of these electrolyte residues. Scenario analyses of L-lysine (LYS) HCl, L-methionine (MET), and L-cysteine (CYS) HCl production highlight the environmental and economic benefits of the plant-scale circular economy.

View Article and Find Full Text PDF

Studies presenting visible-light-induced desulfurization of peptides containing a cysteine residue have been carried out. This transformation driven by light-emitting-diode-type light proceeds with high efficiency in an aqueous solution at room temperature and involves the use of a catalytic amount of photosensitizer, Rose Bengal. The procedure has been tested on model synthetic peptides, lysozyme C and α-crystallin, and successfully applied to a one-pot native chemical ligation (NCL)-desulfurization protocol.

View Article and Find Full Text PDF

Alkylated DNA repair by a novel HhH-GPD family protein from Crenarchaea.

Nucleic Acids Res

January 2025

College of Plant Protection, Agricultural University of Hebei, No. 2596 Lekai South Street, Baoding City, Lianchi District, Hebei Province 071001, China.

HhH-GPD (helix-hairpin-helix-glycine/proline/aspartate) family proteins are involved in DNA damage repair. Currently, mechanism of alkylated DNA repair in Crenarchaea has not been fully clarified. The hyperthermophilic model crenarchaeon Saccharolobus islandicus REY15A possesses a novel HhH-GPD family protein (Sis-HhH-GPD), where its Ser152 corresponds to a conserved catalytic Asp in other HhH-GPD homologs.

View Article and Find Full Text PDF

Toll/interleukin-1 receptor-only genes contribute to immune responses in maize.

Plant Physiol

January 2025

The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao 266237, China.

Proteins with Toll/interleukin-1 receptor (TIR) domains are widely distributed in both prokaryotes and eukaryotes, serving as essential components of immune signaling. Although monocots lack the major TIR-nucleotide-binding (NB)-leucine-rich repeat (LRR)-type (TNL) immune receptors, they possess a small number of TIR-only proteins, the function of which remains largely unknown. In the monocot maize (Zea mays), there are three conserved TIR-only genes in the reference genome, namely ZmTIR1 to ZmTIR3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!