A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Finkelstein's test: a biomechanical analysis. | LitMetric

Finkelstein's test: a biomechanical analysis.

J Hand Surg Am

Biomechanics Laboratory, Division of Orthopedic Research, Mayo Clinic Rochester, 200 First Street SW, Rochester, MN 55905, USA.

Published: January 2005

Purpose: Finkelstein's test is the classic diagnostic test for de Quervain's disease. Finkelstein hypothesized that the entry of the muscle bellies of the extensor pollicis brevis (EPB) and abductor pollicis longus (APL) tendons into the first extensor compartment was responsible for the findings observed in his now eponymous test. We agree with Finkelstein's hypothesis and further hypothesize that this position would induce measurable bulk (muscle mass within the retinaculum) and tethering (stretching of synovial tissue) effects within the compartment. To test this latter hypothesis we measured the excursion and gliding resistance of the EPB and APL tendons within the first compartment.

Methods: Fifteen fresh-frozen cadavers were used. Gliding resistance and excursion were measured in 4 different wrist positions, including the wrist position of Finkelstein's test (30 degrees ulnar deviation). The bulk and tethering effect was calculated based on the mean gliding resistance over the tendon proximal/distal excursion cycle and the gliding resistance at the terminal distal excursion.

Results: The EPB tendon excursion was significantly more distal in 30 degrees ulnar deviation than in 60 degrees extension. Additionally the bulk and tethering resistance was significantly greater in 30 degrees ulnar deviation compared with 60 degrees extension. For the APL tendon there was no significant difference in either the tendon excursion or the bulk and tethering resistance between 30 degrees ulnar deviation and 60 degrees extension.

Conclusions: We showed that in the position of Finkelstein's test the EPB tendon is significantly more distal and has significantly greater bulk and tethering effect compared with the other EPB positions. This is not the case for the APL tendon in the position of Finkelstein's test. These results suggest that an abnormal Finkelstein's test reflects differences of the EPB more than it does the APL.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhsa.2004.07.001DOI Listing

Publication Analysis

Top Keywords

finkelstein's test
24
gliding resistance
16
degrees ulnar
16
ulnar deviation
16
bulk tethering
16
position finkelstein's
12
test
8
apl tendons
8
epb apl
8
epb tendon
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!