Energy biogenesis: one key for coordinating two genomes.

Trends Genet

Dipartimento di Anatomia Patologica e di Genetica, Sezione di Genetica, Università di Bari, via Amendola 165/A, 70126 Bari, Italy.

Published: January 2005

In metazoan organisms, energy production is the only example of a process that is under dual genetic control: nuclear and mitochondrial. We used a genomic approach to examine how energy genes of both the nuclear and mitochondrial genomes are coordinated, and discovered a novel genetic regulatory circuit in Drosophila melanogaster that is surprisingly simple and parsimonious. This circuit is based on a single DNA regulatory element and can explain both intra- and inter-genomic coordinated expression of genes involved in energy production, including the full complement of mitochondrial and nuclear oxidative phosphorylation genes, and the genes involved in the Krebs cycle.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tig.2004.11.009DOI Listing

Publication Analysis

Top Keywords

energy production
8
nuclear mitochondrial
8
genes involved
8
energy
4
energy biogenesis
4
biogenesis key
4
key coordinating
4
coordinating genomes
4
genomes metazoan
4
metazoan organisms
4

Similar Publications

This study aimed to evaluate the effects of different dietary supplementation levels with jujube fruit powder on the performance, biochemical parameters, and egg quality characteristics of laying quails. A total of 60 quails (45 days old) were randomly assigned to treatments with different levels of jujube fruit powder: a basal diet (control) and diets supplemented with 5 g/kg (T1), 10 g/kg (T2), with five replicates per treatment (20 quails/treatment and four quails/replicate). The differences between 1-15 and 16-30 days for feed intake (p<0.

View Article and Find Full Text PDF

The Warburg Effect: Is it Always an Enemy?

Front Biosci (Landmark Ed)

November 2024

Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus.

The Warburg effect, also known as 'aerobic' glycolysis, describes the preference of cancer cells to favor glycolysis over oxidative phosphorylation for energy (adenosine triphosphate-ATP) production, despite having high amounts of oxygen and fully active mitochondria, a phenomenon first identified by Otto Warburg. This metabolic pathway is traditionally viewed as a hallmark of cancer, supporting rapid growth and proliferation by supplying energy and biosynthetic precursors. However, emerging research indicates that the Warburg effect is not just a strategy for cancer cells to proliferate at higher rates compared to normal cells; thus, it should not be considered an 'enemy' since it also plays complex roles in normal cellular functions and/or under stress conditions, prompting a reconsideration of its purely detrimental characterization.

View Article and Find Full Text PDF

Alkaline Hydrogen Evolution Reaction Electrocatalysts for Anion Exchange Membrane Water Electrolyzers: Progress and Perspective.

JACS Au

December 2024

Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, 201804, Shanghai, China.

For the aim of achieving the carbon-free energy scenario, green hydrogen (H) with non-CO emission and high energy density is regarded as a potential alternative to traditional fossil fuels. Over the last decades, significant breakthroughs have been realized on the alkaline hydrogen evolution reaction (HER), which is a fundamental advancement and efficient process to generate high-purity H in the laboratory. Based on this, the development of the practical industry-oriented anion exchange membrane water electrolyzer (AEMWE) is on the rise, showing competitiveness with the incumbent megawatt-scale H production technologies.

View Article and Find Full Text PDF

The chemical industry can now seize the opportunity to improve the sustainability of its processes by replacing fossil carbon sources with renewable alternatives such as CO, biomass, and plastics, thereby thinking ahead and having a look into the future. For their conversion to intermediate and final products, different types of catalysts-microbial, enzymatic, and organometallic-can be applied. The first part of this review shows how these catalysts can work separately in parallel, each route with unique requirements and advantages.

View Article and Find Full Text PDF

The chemical similarities between trivalent actinides [An(III)] and lanthanides [Ln(III)] present a significant challenge in differentiating and separating them, which is a key step toward closing the nuclear fuel cycle. However, the existing separation approaches commonly suffer from demerits such as inadequate separation factors, limited stripping efficiency, and undesired coextraction. In this study, a novel unsymmetrical phenanthroline-derived amide-triazine (Et-Tol-CyMe-ATPhen) extractant was first designed and then screened with theoretical computation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!