The main anticancer action of doxorubicin (DOX) is believed to be due to topoisomerase II inhibition and free radical generation. Our previous study has demonstrated that TAS-103, a topoisomerase inhibitor, induces apoptosis through DNA cleavage and subsequent H(2)O(2) generation mediated by NAD(P)H oxidase activation [H. Mizutani et al. J. Biol. Chem. 277 (2002) 30684-30689]. Therefore, to clarify whether DOX functions as an anticancer drug through the same mechanism or not, we investigated the mechanism of apoptosis induced by DOX in the human leukemia cell line HL-60 and the H(2)O(2)-resistant sub-clone, HP100. DOX-induced DNA ladder formation could be detected in HL-60 cells after a 7 h incubation, whereas it could not be detected under the same condition in HP100 cells, suggesting the involvement of H(2)O(2)-mediated pathways in apoptosis. Flow cytometry revealed that H(2)O(2) formation preceded the increase in Delta Psi m and caspase-3 activation. Poly(ADP-ribose) polymerase (PARP) and NAD(P)H oxidase inhibitors prevented DOX-induced DNA ladder formation in HL-60 cells. Moreover, DOX significantly induced formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine, an indicator of oxidative DNA damage, in HL-60 cells at 1 h, but not in HP100 cells. DOX-induced apoptosis was mainly initiated by oxidative DNA damage in comparison with the ability of other topoisomerase inhibitors (TAS-103, amrubicin and amrubicinol) to cause DNA cleavage and apoptosis. These results suggest that the critical apoptotic trigger of DOX is considered to be oxidative DNA damage by the DOX-induced direct H(2)O(2) generation, although DOX-induced apoptosis may involve topoisomerase II inhibition. This oxidative DNA damage causes indirect H(2)O(2) generation through PARP and NAD(P)H oxidase activation, leading to the Delta Psi m increase and subsequent caspase-3 activation in DOX-induced apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2004.05.040DOI Listing

Publication Analysis

Top Keywords

oxidative dna
16
dna damage
16
h2o2 generation
12
nadph oxidase
12
hl-60 cells
12
dox-induced apoptosis
12
mechanism apoptosis
8
apoptosis induced
8
topoisomerase inhibition
8
dna
8

Similar Publications

Bi-targeting of thioredoxin 1 and telomerase by thiotert promotes cell death of myelodysplastic syndromes and lymphoma.

Biol Direct

January 2025

Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.

Thioredoxin1 (TRX1) and telomerase are both attractive oncology targets that are tightly implicated in tumor initiation and development. Here, we reported that the 6-dithio-2-deoxyguanosine analog thiotert exhibits an effective cytotoxic effect on myelodysplastic syndromes (MDS) cell SKM-1 and lymphoma cell U-937. Further studies confirmed that thiotert effectively disrupts cellular redox homeostasis, as evidenced by elevated intracellular reactive oxygen species (ROS) levels, increased MnSOD, accelerated DNA impairment, and activated apoptosis signal.

View Article and Find Full Text PDF

Deep learning reveals diverging effects of altitude on aging.

Geroscience

January 2025

Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.

Aging is influenced by a complex interplay of multifarious factors, including an individual's genetics, environment, and lifestyle. Notably, high altitude may impact aging and age-related diseases through exposures such as hypoxia and ultraviolet (UV) radiation. To investigate this, we mined risk exposure data (summary exposure value), disease burden data (disability-adjusted life years (DALYs)), and death rates and life expectancy from the Global Health Data Exchange (GHDx) and National Data Management Center for Health of Ethiopia for each subnational region of Ethiopia, a country with considerable differences in the living altitude.

View Article and Find Full Text PDF

The transcription factor p53 is exquisitely sensitive and selective to a broad variety of cellular environments. Several studies have reported that oxidative stress weakens the p53-DNA binding affinity for certain promoters depending on the oxidation mechanism. Despite this body of work, the precise mechanisms by which the physiologically relevant DNA-p53 tetramer complex senses cellular stresses caused by HO are still unknown.

View Article and Find Full Text PDF

Bacterial pathogens possess a remarkable capacity to sense and adapt to ever-changing environments. For example, Vibrio cholerae, the causative agent of the severe diarrheal disease cholera, thrives in aquatic ecosystems and human hosts through dynamic survival strategies. In this study, we investigated the role of three photolyases, enzymes that repair DNA damage caused by exposure to UV radiation and blue light, in the environmental survival of V.

View Article and Find Full Text PDF

U2AF1 mutation causes an oxidative stress and DNA repair defect in hematopoietic and leukemic cells.

Free Radic Biol Med

January 2025

State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College,Tianjin, 300030, China; Tianjin Institutes of Health Science, Tianjin 301617, China. Electronic address:

U2AF1 is a core component of spliceosome and controls cell-fate specific alternative splicing. U2AF1 mutations have been frequently identified in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) patients, and mutations in U2AF1 are associated with poor prognosis in hematopoietic malignant diseases. Here, by forced expression of mutant U2AF1 (U2AF1 S34F) in hematopoietic and leukemic cell lines, we find that U2AF1 S34F causes increased reactive oxygen species (ROS) production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!