Cod parvalbumin, a calcium-binding protein, possesses a specific Zn2+ (or Cu2+) binding site per molecule. This work employed fluorescence energy transfer techniques to measure the distance between the Zn2+ (Cu2+) site and the stronger Ca(2+)-binding site in parvalbumin. Specifically, the distance between Tb3+ bound at the Ca2+ site and Co2+ bound to the Zn2+ (Cu2+) binding site was 10.3 +/- 0.9 A. Lastly, the effects of Cu2+ on the physico-chemical properties of parvalbumin were studied by measuring the accessibility of protein thiol groups to 5,5'-dithio bis(2-nitrobenzoic acid) and by its affinity for the fluorescent probe 4,4'-bis[1-(phenylamino)-8-naphthalene sulfonic acid] dipotassium salt. The thiol group accessibility decreased and the affinity to the fluorescent probe increased upon complexation of Cu2+ to the protein. It appears that the binding of Cu2+ converts parvalbumin to an apo-like state.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0301-4622(92)85008-r | DOI Listing |
Molecules
December 2024
Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
Gold nanoclusters (AuNCs) have been widely investigated because of their unique photoluminescence properties. However, the applications of AuNCs are limited by their poor stability and relatively low fluorescence. In the present work, we developed nanocomposites (L-Cys-AuNCs@ZIF-8) with high fluorescence and stability, which were constructed by encapsulating the water-dispersible L-Cys-AuNCs into a ZIF-8 via Zn-triggered growth strategy without high temperature and pressure.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
School of Science, Harbin Institute of Technology, Shenzhen 518055, China.
NbO-type ceramics (where = Mg, Ca, Mn, Co, Ni, Zn and = Ti, Zr) are essential for satellite communication and mobile base stations due to their medium relative permittivity () and high quality factor ( × ). Although ZnTiZrNbO ceramic exhibits impressive microwave dielectric properties, including an of 29.75, a × of 107,303 GHz, and a of -24.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Center for Engineering, Modeling, and Applied Sciences (CECS), Federal University of ABC (UFABC), São Paulo 09210-580, Brazil. Electronic address:
The scarcity of water resources and their pollution are vital to modern civilization. Thus, adsorptive membranes are promising candidates to be applied in the filtration systems to improve the water quality. In summary, this study investigated the effect of chitosan (CS) in the morphological, chemical, and physical aspects of PLA-based membranes incorporating chitosan obtained by electrospinning process, their adsorption behavior in multielement aqueous systems containing Cr, Cu, Zn, Mn , Ni, and Cd in pH 4, and the possible removal mechanism on the composite electrospun membrane's surface.
View Article and Find Full Text PDFEnzyme Microb Technol
December 2024
State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, China.
The exorbitant production costs associated with natural tannases pose a significant challenge to their widespread industrial utilization. Microbial expression systems provide a cost-effective method for enzyme production. In this study, a putative gene encoding the subtype B tannase (Gt-Tan) was cloned from Galactobacillus timonensis and expressed heterologously in Escherichia coli BL21 (DE3) cells.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Pharmacognosy Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt.
Contamination of water by heavy toxic metal ions such as (e.g., Cr, Mn, Ni, Cu, Zn, As Pb, Cd, and Ag) can lead to serious environmental and human health problems because of their acute and chronic toxicity to the biological system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!