Telomeres are specialized structures at the ends of the chromosomes that, with the help of proteins--such as the telomere repeat-binding factor TRF2 -, form protective caps which are essential for chromosomal integrity. Investigating the structure and three-dimensional (3D) distribution of the telomeres and TRF2 in the nucleus, we now show that the telomeres of the immortal HaCaT keratinocytes are distributed in distinct non-overlapping territories within the inner third of the nuclear space in interphase cells, while they extend more widely during mitosis. TRF2 is present at the telomeres at all cell cycle phases. During mitosis additional TRF2 protein concentrates all around the chromosomes. This change in staining pattern correlates with a significant increase in TRF2 protein at the S/G2 transition as seen in Western blots of synchronized cells and is paralleled by a cell cycle-dependent regulation of TRF2 mRNA, arguing for a specific role of TRF2 during mitosis. The distinct territorial localization of telomeres is abrogated in a HaCaT variant that constitutively expresses c-Myc--a protein known to contribute to genomic instability. These cells are characterized by overlapping telomere territories, telomeric aggregates (TAs), that are accompanied by an overall irregular telomere distribution and a reduced level in TRF2 protein. These TAs which are readily detectable in interphase nuclei, are similarly present in mitotic cells, including cells in telophase. Thus, we propose that TAs, which subsequently also cluster their respective chromosomes, contribute to genomic instability by forcing an abnormal chromosome segregation during mitosis.

Download full-text PDF

Source
http://dx.doi.org/10.1078/0171-9335-00430DOI Listing

Publication Analysis

Top Keywords

trf2 protein
12
trf2
9
cell cycle-dependent
8
distribution telomeres
8
telomere repeat-binding
8
repeat-binding factor
8
factor trf2
8
contribute genomic
8
genomic instability
8
telomeres
6

Similar Publications

TRF1 and TRF2 form distinct shelterin subcomplexes at telomeres.

bioRxiv

December 2024

Institute for Quantitative Health Science and Engineering, Gynecology and Reproductive Biology, Michigan State University, East Lansing.

The shelterin complex protects chromosome ends from the DNA damage repair machinery and regulates telomerase access to telomeres. Shelterin is composed of six proteins (TRF1, TRF2, TIN2, TPP1, POT1 and RAP1) that can assemble into various subcomplexes . However, the stoichiometry of the shelterin complex and its dynamic association with telomeres in cells is poorly defined.

View Article and Find Full Text PDF

Telomeres are crucial for cancer progression. Immune signalling in the tumour microenvironment has been shown to be very important in cancer prognosis. However, the mechanisms by which telomeres might affect tumour immune response remain poorly understood.

View Article and Find Full Text PDF

Telomere repeat-binding factor 2 (TRF2) is a key component of the shelterin complex which guards the integrity of the telomere. Most of the TRF2 discussed previously was focused on the telomere, and relatively less is discussed on aspects other than that. It is proved that TRF2 also localizes to other potential G-quadruplex-forming sequences among the whole genome besides the telomere.

View Article and Find Full Text PDF

TRF2 is an essential and conserved double-strand telomere binding protein that stabilizes chromosome ends by suppressing DNA damage response and aberrant DNA repair. Herein we investigated the mechanisms and functions of the Trf2 ortholog in the basidiomycete fungus Ustilago maydis, which manifests strong resemblances to metazoans with regards to the telomere and DNA repair machinery. We showed that UmTrf2 binds to Blm in vitro and inhibits Blm-mediated unwinding of telomeric DNA substrates.

View Article and Find Full Text PDF
Article Synopsis
  • Early life stress (ELS) is linked to adult mental disorders like PTSD, with varying effects based on gender and resilience factors.
  • The study investigated emotional and cognitive behaviors in rats subjected to different durations of maternal separation (MS) and subsequent prolonged stress (SPS) in adulthood, noting anxiety, depression, and memory deficits.
  • Key findings showed that maternal separation affects behaviors differently based on stress exposure duration, with observed changes in telomere length and protein expression that could relate to mechanisms of PTSD.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!