The birth and differentiation of neurons have been extensively studied in the olfactory epithelium (OE) of rodents but not in humans. The goal of this study was to characterize cellular composition and molecular expression of human OE in vivo and in vitro. In rodent OE, there are horizontal basal cells and globose basal cells that are morphologically and functionally distinct. In human OE, however, there appears to be no morphological distinction among basal cells, with almost all cells having round cell bodies similar to rodent globose basal cells. Unlike the case in rodents, human basal cells, including putative neuronal precursors, express p75NGFR, suggesting a distinctive role for p75NGFR in human OE neurogenesis. Molecular expression of neuronal cells during differentiation in human OE grossly follows that in rodents. However, the topographical organization of immature and mature ORNs in human OE differs from that of rodents, in that immature and mature ORNs in humans are dispersed throughout the OE, whereas rodent counterparts have a highly laminar organization. These observations together suggest that the birth and differentiation of neuronal cells in human OE differ from those in rodents. In OE explant culture, neuronal cells derived from human OE biopsy express markers for immature and mature neurons, grossly recapitulating neuronal differentiation of olfactory neurons in vivo. Furthermore, small numbers of cells are doubly label for bromodeoxyuridine and olfactory marker protein, indicating that neuronal cells born in vitro reach maturity. These data highlight species-related differences in OE development and demonstrate the utility of explant culture for experimental studies of human neuronal development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cne.20424 | DOI Listing |
World J Surg Oncol
January 2025
Department of Pathology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, 200092, China.
Objective: This study aimed to compare the expression of lymphoid enhancer factor 1 (LEF1) and β-catenin in basal cell adenoma (BA), desmoid-type fibromatosis (DF), and pancreatic solid pseudopapillary neoplasm (SPN) to evaluate their diagnostic utility in tumors associated with the WNT/β-catenin signaling pathway harboring the mutation of CTNNB1 gene 3 exon.
Methods: Eighty tumor patients, including 26 BAs, 30 DFs, and 24 SPNs, were analyzed. Immunohistochemical staining was identified positive (nuclear staining of LEF1 and β-catenin in > 50% of tumor cells).
BMC Plant Biol
January 2025
Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh, 11451, Saudi Arabia.
Background: The present research work was done to evaluate the anatomical differences among selected species of the family Bignoniaceae, as limited anatomical data is available for this family in Pakistan. Bignoniaceae is a remarkable family for its various medicinal properties and anatomical characterization is an important feature for the identification and classification of plants.
Methodology: In this study, several anatomical structures were examined, including stomata type and shape, leaf epidermis shape, epidermal cell size, and the presence or absence of trichomes and crystals (e.
Biochem Biophys Res Commun
January 2025
Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Electronic address:
The glomerular filtration barrier (GFB) has a unique spatial structure, including porous capillary endothelial cells, glomerular basal membrane (GBM) and highly specialized podocytes. This special structure is essential for the hemofiltration process of nephrons. GBM is the central meshwork structure of GFB formed by the assembly and fusion of various extracellular matrix (ECM) macromolecules, such as laminins and collagens, which undergo isoform transformation and maturation that may require precise regulation by metalloproteinases.
View Article and Find Full Text PDFBiochem Cell Biol
January 2025
Department of Histology and Embryology, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China.
Idiopathic pulmonary fibrosis (IPF) is a progressive and irreversible lung disease with high mortality and limited treatment options. While single-dose bleomycin-induced models are commonly used to investigate the pathogenesis of IPF, they fail to adequately replicate the complex pathological features in human patients, thereby hindering comprehensive investigations. Previous studies utilizing repetitive bleomycin injections have demonstrated a closer resemblance to human IPF pathology; however, the time- and resource-intensive nature of this approach presents significant drawbacks.
View Article and Find Full Text PDFEClinicalMedicine
February 2025
French Reference Center for Mastocytosis (CEREMAST), Paris Cité University, Necker - Enfants Malades University Hospital, APHP, Paris, France.
Background: Systemic mastocytosis (SM) diagnosis requires the presence of 3 minor criteria or 1 major and 1 minor criterion according to the WHO 2016 classification. The aim of this study was to characterize patients with 1 or 2 minor SM criteria including mutation and/or aberrant expression of CD2 and/or CD25 on bone marrow (BM) mast cells (MCs), but without MC activation syndrome (MCAS) criteria.
Methods: We included eligible patients from two countries diagnosed between 2011 and 2021.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!