Recently, we found that the MeOH extract of Penicillium oxalicum showed inhibitory activity towards DNA topoisomerase I. Subsequently, ergosterol peroxide, ergosterol, palmitoleic acid, and linoleic acid were isolated from the cultured mycelia of P. oxalicum. The structural determinations were based on physical and spectral analyses. Biological evaluation revealed that ergosterol peroxide inhibited the relaxation of supercoiled DNA (pBR322) induced by DNA topoisomerase I, and also showed marginal, selective cytotoxic activity against human colon tumor cells [COLO-205 (ED50=8.56 microg/mL].

Download full-text PDF

Source
http://dx.doi.org/10.1055/s-2005-837755DOI Listing

Publication Analysis

Top Keywords

dna topoisomerase
12
ergosterol peroxide
12
penicillium oxalicum
8
dna
4
topoisomerase inhibitor
4
ergosterol
4
inhibitor ergosterol
4
peroxide penicillium
4
oxalicum meoh
4
meoh extract
4

Similar Publications

Etoposide as a Key Therapeutic Agent in Lung Cancer: Mechanisms, Efficacy, and Emerging Strategies.

Int J Mol Sci

January 2025

Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea.

Topoisomerase II inhibitors, particularly etoposide, have long been integral to the treatment of lung cancer, especially small cell lung cancer. This review comprehensively examines the mechanisms of action of etoposide, its clinical efficacy, and its role in current lung cancer treatment regimens. Etoposide exerts its anticancer effects by inducing DNA strand breaks through the inhibition of topoisomerase II, leading to cancer cell apoptosis.

View Article and Find Full Text PDF

Glioblastoma (GBM), the most prevalent primary malignant brain tumor, remains challenging to treat due to extensive inter- and intra-tumor heterogeneity. This variability demands combination treatments to improve therapeutic outcomes. A significant obstacle in treating GBM is the expression of O-methylguanine-DNA methyltransferase, a DNA repair enzyme that reduces the efficacy of the standard alkylating agent, temozolomide, in about 50% of patients.

View Article and Find Full Text PDF

DNA Damage Response Mutants Challenged with Genotoxic Agents-A Different Experimental Approach to Investigate the and Genes.

Genes (Basel)

January 2025

Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100 Pavia, Italy.

DNA damage response (DDR) is a highly conserved and complex signal transduction network required for preserving genome integrity. DNA repair pathways downstream of DDR include the tyrosyl-DNA phosphodiesterase1 (TDP1) enzyme that hydrolyses the phosphodiester bond between the tyrosine residue of topoisomerase I (TopI) and 3'-phosphate end of DNA. A small TDP1 subfamily, composed of TDP1α and TDP1β, is present in plants.

View Article and Find Full Text PDF

The rise of antimicrobial resistance represents a significant global health threat, driven by the diminishing efficacy of existing antibiotics, a lack of novel antibacterials entering the market, and an over- or misuse of existing antibiotics, which accelerates the evolution of resistant bacterial strains. This review focuses on innovative therapies by highlighting 19 novel antibacterials in clinical development as of June 2024. These selected compounds are characterized by new chemical scaffolds, novel molecular targets, and/or unique mechanisms of action, which render their potential to break antimicrobial resistance particularly high.

View Article and Find Full Text PDF

Antimicrobial resistance is one of the major health threats of the modern world. Thus, new structural classes of antimicrobial compounds are needed in order to overcome existing resistance. Cystobactamids represent one such new compound class that inhibit the well-established target bacterial type II topoisomerases while exhibiting superior antibacterial and resistance-breaking properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!