We have shown that pituitary vasoactive intestinal peptide (VIP) mediates the effects of estrogen on lactotrope hyperplasia, angiogenesis and hyperprolactinemia, and reduces the pituitary content of transforming growth factor beta beta1 (TGF-beta1, an inhibitor of lactotrope proliferation). Dopamine agonists reverse lactotrope hyperplasia and hyperprolactinemia and also reduce the pituitary VIP content in hyperestrogenized rats. To elucidate the interaction of bromocriptine (BC) and pituitary VIP, a VIP receptor antagonist (VA), BC, or both drugs were administered for 5 days to F344 rats treated with diethylstilbestrol (DES). Both BC and VA similarly blocked the effects of DES on pituitary weight and pituitary content of prolactin (PRL), proliferating cell nuclear antigen, and vascular endothelial growth factor, without evidence of synergism. The estrogen effect on pituitary TGF-beta1 was completely inhibited by VA, but only partially by BC. On the contrary, serum PRL was close to the normal levels in the BC group 2 h after the first dose, while VA only reduced serum PRL after 5 days. DES increased VIP and VIP mRNA levels specifically at the pituitary, this effect being partially blocked by BC. These data suggest that the dopamine agonists inhibit lactotrope proliferation and angiogenesis by blocking the autocrine/paracrine action of VIP. On the other hand, the dopamine agonists inhibit the estrogen-induced hyperprolactinemia by acting through different pathways than those implicated in the proliferative process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000083658 | DOI Listing |
Transl Vis Sci Technol
January 2025
Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
Purpose: Regulating intraocular pressure (IOP), mainly via the trabecular meshwork (TM), is critical in developing glaucoma. Whereas current treatments aim to lower IOP, directly targeting the dysfunctional TM tissue for therapeutic intervention has proven challenging. In our study, we utilized Dexamethasone (Dex)-treated TM cells as a model to investigate how extracellular vesicles (EVs) from immortalized corneal stromal stem cells (imCSSCs) could influence ANGPTL7 and MYOC genes expression within TM cells.
View Article and Find Full Text PDFJAMA Ophthalmol
January 2025
Truhlsen Eye Center, Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha.
Importance: Randomized clinical trials have shown the safety and efficacy of faricimab as a novel vascular endothelial growth factor and angiopoietin-2 inhibitor in the treatment of neovascular age-related macular degeneration (nAMD) and macular edema of various etiologies. However, more rare adverse events may not be considered in clinical trials.
Objective: To describe 3 eyes that developed irreversible vision loss following initial mild intraocular inflammation (IOI) to faricimab.
Invest Ophthalmol Vis Sci
January 2025
Wilmer Eye Institute, Johns Hopkins Medical Institute, Baltimore, Maryland, United States.
Purpose: Although mechanical injury to the cornea (e.g. chronic eye rubbing) is a known risk factor for keratoconus progression, how it contributes to loss of corneal integrity is not known.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China.
Light serves as an energy source for cell division and expansion during fruit development. Cell expansion significantly influences fruit size and is closely linked to endoreduplication, a unique cell cycle variation characterized by DNA replication without cytokinesis. Paradoxically, under conditions of ample photosynthates, light signaling suppresses cell expansion.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China.
Heterogeneous roles of complement C3 have been implicated in tumor metastasis and are highly context dependent. However, the underlying mechanisms linking C3 to tumor metastasis remain elusive in renal cell carcinoma (RCC). Here, we demonstrate that C3 of RCC cell-derived extracellular vesicles (EVs) contributes to metastasis via polarizing tumor-associated macrophages (TAMs) into the immunosuppressive phenotype and recruiting polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!