Compound-specific Na+ channel pore conformational changes induced by local anaesthetics.

J Physiol

Department of Anaesthesiology, Vanderbilt University, School of Medicine, Nashville, TN 37232-6602, USA.

Published: April 2005

Upon prolonged depolarizations, voltage-dependent Na+ channels open and subsequently inactivate, occupying fast and slow inactivated conformational states. Like C-type inactivation in K+ channels, slow inactivation is thought to be accompanied by rearrangement of the channel pore. Cysteine-labelling studies have shown that lidocaine, a local anaesthetic (LA) that elicits depolarization-dependent ('use-dependent') Na+ channel block, does not slow recovery from fast inactivation, but modulates the kinetics of slow inactivated states. While these observations suggest LA-induced stabilization of slow inactivation could be partly responsible for use dependence, a more stringent test would require that slow inactivation gating track the distinct use-dependent kinetic properties of diverse LA compounds, such as lidocaine and bupivacaine. For this purpose, we assayed the slow inactivation-dependent accessibility of cysteines engineered into domain III, P-segment (mu1: F1236C, K1237C) to sulfhydryl (MTSEA) modification using a high-speed solution exchange system. As expected, we found that bupivacaine, like lidocaine, protected cysteine residues from MTSEA modification in a depolarization-dependent manner. However, under pulse-train conditions where bupivacaine block of Na+ channels was extensive (due to ultra-slow recovery), but lidocaine block of Na+ channels was not, P-segment cysteines were protected from MTSEA modification. Here we show that conformational changes associated with slow inactivation track the vastly different rates of recovery from use-dependent block for bupivacaine and lidocaine. Our findings suggest that LA compounds may produce their kinetically distinct voltage-dependent behaviour by modulating slow inactivation gating to varying degrees.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1456037PMC
http://dx.doi.org/10.1113/jphysiol.2004.081646DOI Listing

Publication Analysis

Top Keywords

slow inactivation
20
na+ channels
12
mtsea modification
12
slow
9
na+ channel
8
channel pore
8
conformational changes
8
slow inactivated
8
inactivation gating
8
bupivacaine lidocaine
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!