OGG-1 DNA glycosylase (OGG-1) is an enzyme involved in DNA repair. It excises 7,8-dihydro-8-oxoguanine, which is formed by oxidative damage of guanine. We have investigated the role of OGG-1 in inflammation using three models of inflammation: endotoxic shock, diabetes, and contact hypersensitivity. We found that OGG-1(-/-) mice are resistant to endotoxin (lipopolysaccharide, LPS)-induced organ dysfunction, neutrophil infiltration and oxidative stress, when compared with the response seen in wild-type controls (OGG(+/+)). Furthermore, the deletion of the OGG-1 gene was associated with decreased serum cytokine and chemokine levels and prolonged survival after LPS treatment. Type I diabetes was induced by multiple low-dose streptozotocin treatment. OGG-1(-/-) mice were found to have significantly lower blood glucose levels and incidence of diabetes as compared with OGG-1(+/+) mice. Biochemical analysis of the pancreas showed that OGG-1(-/-) mice had greater insulin content, indicative of a greater beta-cell mass coupled with lower levels of the chemokine MIP-1alpha and Th1 cytokines IL-12 and TNF-alpha. Levels of protective Th2 cytokines, IL-4 and IL-10 were significantly higher in the pancreata of OGG-1(-/-) mice as compared with the levels measured in wild-type mice. In the contact hypersensitivity induced by oxazolone, the OGG-1(-/-) mice showed reduced neutrophil accumulation, chemokine, and Th1 and Th2 cytokine levels in the ear tissue. The current studies unveil a role for OGG-1 in the regulation of inflammation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.04-2278fje | DOI Listing |
Electromagn Biol Med
October 2022
Department of Electrical and Electronics Engineering, Ege University, Izmir, Turkey.
J Cell Biochem
December 2020
Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan.
J Immunol
April 2017
Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203;
Oxygen is supplied as a supportive treatment for patients suffering from acute respiratory distress syndrome. Unfortunately, high oxygen concentration increases reactive oxygen species generation, which causes DNA damage and ultimately cell death in the lung. Although 8-oxoguanine-DNA glycosylase (OGG-1) is involved in repairing hyperoxia-mediated DNA damage, the underlying molecular mechanism remains elusive.
View Article and Find Full Text PDFToxicol Lett
July 2012
St. John's University, College of Pharmacy and Allied Health Professions, Department of Pharmaceutical Sciences, Toxicology Division, Queens, NY 11439, USA.
Exposure to metals alters gene expression, changes transcription rates or interferes with DNA repair mechanisms. We tested a hypothesis to determine whether in vitro acute metal exposure, with or without recovery, alters epigenetic pathways in mouse embryonic stem (mES) cells. We measured cell viability, total and histone protein production, changes in gene expression for differentiation and DNA repair, and histone lysine mono-methylation (H3K27me1), in differentiated cells.
View Article and Find Full Text PDFFree Radic Biol Med
January 2012
Department of Biochemistry and Molecular Biology, University of North Dakota, Grand Forks, ND 58203-9037, USA.
8-Oxoguanine-DNA glycosylase (OGG-1) is a base excision DNA repair enzyme; however, its function in modulating allergic diseases remains undefined. Using OGG-1 knockout (KO) mice, we show that this protein affects allergic airway inflammation after sensitization and challenge by ovalbumin(OVA). OGG-1 KO mice exhibited less inflammatory cell infiltration and reduced oxidative stress in the lungs after OVA challenge compared to WT mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!