Haemodynamically significant plaque formation and regional endothelial dysfunction in cholesterol-fed ApoE-/- mice.

Clin Sci (Lond)

Department of Physiology, Institute of Physiology and Pharmacology, The Sahlgrenska Academy, Göteborg University, Göteborg, Sweden.

Published: June 2005

Flow-mediated vasodilation is suggested as one of the mechanisms involved in arterial expansive remodelling, which is thought to be a defence mechanism in atherogenesis. In the present study, we tested the hypothesis that lumen obstructive plaque formation is associated with failure of NO (nitric oxide)-dependent vasodilation in conduit vessels. Cardiac function and aortic root flow velocities were assessed using high-resolution echocardiography and two-dimensional-guided pulsed Doppler in ApoE(-/-) (apolipoprotein E-deficient) mice fed a standard or high-cholesterol diet. Endothelial function in the proximal and mid-descending aortic regions was studied using a myograph technique. Flow velocity at the aortic root of cholesterol-fed ApoE(-/-) mice was significantly increased as a result of lumen narrowing, detected via histological analysis. NO-dependent vasodilatory responses were selectively impaired in the atherosclerosis-prone vascular regions in cholesterol-fed ApoE(-/-) mice. In conclusion, consumption of a high-cholesterol diet results in lumen obstructive plaque formation in ApoE(-/-) mice, which significantly alters aortic root haemodynamics. This phenomenon is associated with impaired NO-dependent vasodilation in vessel segments known to be prone to atherosclerosis.

Download full-text PDF

Source
http://dx.doi.org/10.1042/CS20040322DOI Listing

Publication Analysis

Top Keywords

apoe-/- mice
16
plaque formation
12
cholesterol-fed apoe-/-
12
aortic root
12
lumen obstructive
8
obstructive plaque
8
high-cholesterol diet
8
apoe-/-
5
mice
5
haemodynamically plaque
4

Similar Publications

The ε4 variant of human apolipoprotein E () is a key genetic risk factor for neurodegeneration in Alzheimer's disease and elevated all-cause mortality in humans. Understanding the factors and mechanisms that can mitigate the harmful effects of has significant implications. In this study, we find that inactivating the VHL-1 (Von Hippel-Lindau) protein can suppress mortality, neural and behavioral pathologies caused by transgenic human in .

View Article and Find Full Text PDF

Platelet membrane-modified exosomes targeting plaques to activate autophagy in vascular smooth muscle cells for atherosclerotic therapy.

Drug Deliv Transl Res

January 2025

Center for Coronary Heart Disease, Department of Cardiology, National Center for Cardiovascular Diseases of China, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Rd, Beijing, 100037, China.

Atherosclerosis is one of the leading causes of ischemic cardiovascular disease worldwide. Recent studies indicated that vascular smooth muscle cells (VSMCs) play an indispensable role in the progression of atherosclerosis. Exosomes derived from mesenchymal stem cells (MSCs) have demonstrated promising clinical applications in the treatment of atherosclerosis.

View Article and Find Full Text PDF

Alternate day fasting aggravates atherosclerosis through the suppression of hepatic ATF3 in mice.

Life Metab

June 2024

Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.

Atherosclerosis is the major contributor to cardiovascular mortality worldwide. Alternate day fasting (ADF) has gained growing attention due to its metabolic benefits. However, the effects of ADF on atherosclerotic plaque formation remain inconsistent and controversial in atherosclerotic animal models.

View Article and Find Full Text PDF

Background: Atherosclerosis serves as the fundamental pathology for a variety of cardiovascular disorders, with its pathogenesis being closely tied to the complex interplay among lipid metabolism, oxidative stress, and inflammation. Wogonoside is a natural flavonoid extracted from Scutellaria baicalensis with a variety of biological activities, including anti-inflammatory, hypolipidemic, and cardiac function improvement properties. Despite these known effects, the specific role of wogonoside in the context of atherosclerosis remains to be elucidated.

View Article and Find Full Text PDF

Background: The hypobaric hypoxic atmosphere can cause adverse reactions or sickness. The purpose of this study was to explore the preventive effect and mechanism of human umbilical cord mesenchymal stem cells (hUC-MSCs) on acute pathological injury in mice exposed to high-altitude.

Methods: We pretreated C57BL/6 mice with hUC-MSCs via the tail vein injection, and then the mice were subjected to hypobaric hypoxic conditions for five days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!