Frechet-type core-functionalized chiral diamine-based dendritic ligands and hybrid dendritic ligands condensed from polyether wedge and Newkome-type poly(ether-amide) supported multiple ligands were designed and synthesized. The solubility of hybrid dendrimers was found to be finely controlled by the polyether dendron. The catalytic efficiency and recovery use of dendritic ruthenium complexes were compared in the transfer hydrogenation of acetophenone. The core-functionalized dendritic catalysts demonstrated much better recyclability, which verified the stabilizing effects of the bulky polyether wedge on the catalytically active complex. Moreover, the dendritic catalysts were applied in the asymmetric transfer hydrogenation of ketones, enones, imine, and activated olefin, and moderate to excellent enantioselectivitiy was achieved comparable to that of monomeric catalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo048317v | DOI Listing |
Adv Mater
January 2025
State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
Copper-based electrocatalysts are recognized as crucial catalysts for CO electroreduction into multi-carbon products. However, achieving copper-based electrocatalysts with adjustable valences via one-step facile synthesis remains a challenge. In this study, Cu/CuO heterostructure is constructed by adjusting the anion species of the Cu ions-containing electrolyte during electrodeposition synthesis.
View Article and Find Full Text PDFSmall
January 2025
Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China.
The rational design of efficient electrocatalysts with controllable structure and composition is crucial for enhancing the lifetime and cost-effectiveness of oxygen reduction reaction (ORR). PtCo nanocrystals have gained attention due to their exceptional activity, yet suffer from stability issues in acidic media. Herein, an active and highly stable electrocatalyst is developed, namely 3D PtCo@Pt core-shell nanodendrites (NDs), which are formed through the self-assembly of small Pt nanoparticles (≈6 nm).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008, India.
This work aims to deal with the challenges associated with designing complementary bifunctional electrocatalysts and a separator/membrane that enables rechargeable zinc-air batteries (RZABs) with nearly solid-state operability. This solid-state RZAB was accomplished by integrating a bifunctional electrocatalyst based on Ru-RuO interface nanoparticles supported on nitrogen-doped (N-doped) graphene (Ru-RuO/NGr) and a dual-doped poly(acrylic acid) hydrogel (d-PAA) electrolyte soaked in KOH with sodium stannate additive. The catalyst shows enhanced activity and stability toward the two oxygen reactions, i.
View Article and Find Full Text PDFACS Nano
December 2024
Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan.
Dendritic cells (DCs) play a crucial role in initiating antitumor immune responses. However, in the tumor environment, dendritic cells often exhibit impaired antigen presentation and adopt an immunosuppressive phenotype, which hinders their function and reduces their ability to efficiently present antigens. Here, a dual catalytic oxide nanosponge (DON) doubling as a remotely boosted catalyst and an inducer of programming DCs to program immune therapy is reported.
View Article and Find Full Text PDFNanomicro Lett
December 2024
Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
The metal-carbon dioxide batteries, emerging as high-energy-density energy storage devices, enable direct CO utilization, offering promising prospects for CO capture and utilization, energy conversion, and storage. However, the electrochemical performance of M-CO batteries faces significant challenges, particularly at extreme temperatures. Issues such as high overpotential, poor charge reversibility, and cycling capacity decay arise from complex reaction interfaces, sluggish oxidation kinetics, inefficient catalysts, dendrite growth, and unstable electrolytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!