Carbohydrate accumulation in leaves of plants treated with the herbicide chlorsulfuron or imazethapyr is due to a decrease in sink strength.

J Agric Food Chem

Departamento Ciencias del Medio Natural, Universidad Pública de Navarra, Campus Arrosadia, E-31006 Pamplona, Spain.

Published: December 2004

Herbicides that inhibit branched chain amino acid biosynthesis produce a rapid carbohydrate increase in leaves of treated plants. The relationship between these processes is not known nor is the importance of carbohydrate accumulation in the growth inhibition caused by these herbicides. This work analyzes carbohydrate concentration in sources and sinks after herbicide treatments in pea (Pisum sativum L.), as well as photosynthetic carbon assimilation, using two classes of chemicals, chlorsulfuron and imazethapyr, applied to roots or leaves. The most remarkable result was that, in addition to carbohydrate accumulation in leaves, accumulation of sucrose and/or starch in roots was detected. This pattern of carbohydrate accumulation was similar for both herbicides and independent of whether the herbicides were applied to leaves or roots. This indicates that root growth inhibition was not caused by sugar starvation in sinks. Nevertheless, the results are consistent with a decrease in sink strength, leading to the inhibition of photoassimilate translocation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf0486996DOI Listing

Publication Analysis

Top Keywords

carbohydrate accumulation
16
accumulation leaves
8
chlorsulfuron imazethapyr
8
decrease sink
8
sink strength
8
growth inhibition
8
inhibition caused
8
carbohydrate
6
leaves
5
leaves plants
4

Similar Publications

polysaccharides alleviate metabolic dysfunction-associated steatotic liver disease through enhancing hepatocyte RelA/ HNF1α signaling.

World J Gastroenterol

January 2025

State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830000, Xinjiang Uyghur Autonomous Region, China.

Background: polysaccharides (BSP) have antioxidant, immune regulation, and anti-fibrotic activities. However, the therapeutic effect and mechanisms underlying the action of BSP in metabolic dysfunction-associated steatotic liver disease (MASLD) have not been fully understood.

Aim: To investigate the therapeutic effects and mechanisms of BSP on MASLD by centering on the hepatocyte nuclear factor kappa B p65 (RelA)/hepatocyte nuclear factor-1 alpha (HNF1α) signaling.

View Article and Find Full Text PDF

Prolonged exposure to high environmental temperatures results in an accumulated heat load that induces a heat stress (HS) response in dairy cattle. Heat stress compromises dairy farm profitability by reducing milk yield, altering milk composition, and hindering reproductive performance. The ability to alternate between carbohydrate and lipid sources for energy production is termed metabolic flexibility (Met Flex).

View Article and Find Full Text PDF

A bHLH transcription factor RrUNE12 regulates salt tolerance and promotes ascorbate synthesis.

Plant Cell Rep

January 2025

Engineering Research Center of National Forestry and Grassland Administration for Rosa Roxburghii, Agricultural College, Guizhou University, Guiyang, 550025, People's Republic of China.

RrUNE12 binds to the RrGGP2 promoter to facilitate biosynthesis of AsA in Rosa roxburghii fruit. Furthermore, RrUNE12 upregulates antioxidant-related genes and maintains ROS homeostasis, thereby improving tolerance to salt stress. L-ascorbic acid (AsA) plays an essential role in stress defense as a major antioxidant in plant cells.

View Article and Find Full Text PDF

Sodium bisulfite boosted exopolysaccharide production by Auxenochlorella protothecoides: Potential mechanisms harnessing HO signaling and carbon reallocation.

Bioresour Technol

January 2025

Department of Food Science and Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan 411105 China. Electronic address:

Microalgal exopolysaccharides (EPS) possess significant functional benefits across various industrial sectors, but their commercial feasibility is constrained by inefficient synthesis and poorly understood synthesis mechanisms. This study found that 1.25 mmol/L sodium bisulfite promoted EPS accumulation to 224.

View Article and Find Full Text PDF

Prion Protein Endoproteolysis: Cleavage Sites, Mechanisms and Connections to Prion Disease.

J Neurochem

January 2025

Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada.

Highly abundant in neurons, the cellular prion protein (PrP) is an obligatory precursor to the disease-associated misfolded isoform denoted PrP that accumulates in the rare neurodegenerative disorders referred to either as transmissible spongiform encephalopathies (TSEs) or as prion diseases. The ability of PrP to serve as a substrate for this template-mediated conversion process depends on several criteria but importantly includes the presence or absence of certain endoproteolytic events performed at the cell surface or in acidic endolysosomal compartments. The major endoproteolytic events affecting PrP are referred to as α- and β-cleavages, and in this review we outline the sites within PrP at which the cleavages occur, the mechanisms potentially responsible and their relevance to pathology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!