The measurement of coronary lumen cross-sectional area (CSA) is important for coronary physiology and cardiology. The general objective of this study is to develop an accurate and reproducible method to measure the lumen CSA of left anterior descending (LAD) artery using an impedance or conductance catheter. The conductance catheter technique is based on a cylindrical model of the chamber of interest. The first aim of this study was to validate the assumptions of the cylindrical model using a finite-element analysis (FEA) of the conductance catheter in the lumen of the vessel that takes into account the conductance of current through the vessel wall and surrounding tissue (parallel conductance, Gp). The FEA was used to determine the heterogeneity of potential and electrical fields and to optimize the design of the catheter relative to the diameter of the vessel. An optimum relationship between vessel and catheter diameter was obtained based on FEA. The second aim was to validate the in vitro CSA of LAD artery obtained from the conductance catheter method using A-mode ultrasound (US). The present study offers a novel approach to correct for the Gp that involves the injection of two solutions of NaCl (0.5% and 1.5%) with known conductivities directly into the lumen of the coronary artery in a porcine heart. In six hearts obtained from a slaughterhouse, we showed that the CSA and Gp can be determined analytically from two Ohm's law-type algebraic equations (cylindrical model) that account for the parallel conductance. The mean difference in diameter between the conductance catheter using the proposed two-injection method and U.S. was -0.02. The root mean square error for the impedance measurements was 2.8% of the mean US diameter. The future application of this technique to the in vivo condition is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10439-004-7817-2 | DOI Listing |
Ann Emerg Med
January 2025
Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada; Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada. Electronic address:
Study Objective: The peripheral intravenous catheter (IV) is the most common and painful invasive medical device in acute care settings. Our objective was to determine whether adding skin glue to secure IVs reduced catheter failure rate in children.
Methods: We conducted a randomized controlled trial in a tertiary-care pediatric emergency department (ED).
JACC Clin Electrophysiol
December 2024
St Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom; William Harvey Research Institute, Queen Mary University of London, London, United Kingdom. Electronic address:
Background: The sympathetic autonomic nervous system plays a major role in arrhythmia development and maintenance. Historical preclinical studies describe preferential increases in cardiac sympathetic tone upon selective stimulation of the subclavian ansae (SA), a nerve cord encircling the subclavian artery.
Objectives: This study sought to define, for the first time, the functional anatomy and physiology of the SA in humans using a percutaneous approach.
J Clin Med
December 2024
Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy.
Pulmonary vein isolation (PVI) represents the cornerstone of paroxysmal (PAF) and persistent atrial fibrillation (PsAF) ablation. Impedance values provide insights on tissue conductive properties. Consecutive patients undergoing PAF and PsAF ablation were prospectively enrolled.
View Article and Find Full Text PDFJ Clin Med
December 2024
Nurs * Lab, 2829-511 Almada, Portugal.
: A Peripherally Inserted Central Catheter (PICC) is a safe and effective Central Vascular Access Device when properly used. Therefore, it has become an increasingly frequent procedure. Nurses are often the professionals responsible for its insertion, maintenance, and removal.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Guangdong Engineering Technology Research Center of Small Household Appliances Innovation Design and Manufacturing, School of Mechanical Engineering, Guangdong Ocean University, Zhanjiang 524088, China.
During the production of medical thin-walled tubes, a thin coating layer is required. This requirement reduces the cross-sectional clearance area of the straight section flow channel formed by the mandrel and the die, leading to excessive pressure of the polymer melt at the shaping section, elevated die pressure, and backflow of the material melt, all of which directly impact the quality of the coating layer. To address these issues, this study conducted a non-isothermal numerical simulation of coating models both with and without a shaping section.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!