We have studied 72 members belonging to a large kindred with a hearing disorder inherited in an autosomal dominant pattern. We used audiological, physiological, and psychoacoustic measures to characterize the hearing disorders. The initial phenotypic features of the hearing loss are of an auditory neuropathy (AN) with abnormal auditory nerve and brainstem responses (ABRs) and normal outer hair cell functions [otoacoustic emissions (OAEs) and cochlear microphonics (CMs)]. Psychoacoustic studies revealed profound abnormalities of auditory temporal processes (gap detection, amplitude modulation detection, speech discrimination) and frequency processes (difference limens) beyond that seen in hearing impairment accompanying cochlear sensory disorders. The hearing loss progresses over 10-20 years to also involve outer hair cells, producing a profound sensorineural hearing loss with absent ABRs and OAEs. Affected family members do not have evidence of other cranial or peripheral neuropathies. There was a marked improvement of auditory functions in three affected family members studied after cochlear implantation with return of electrically evoked auditory brainstem responses (EABRs), auditory temporal processes, and speech recognition. These findings are compatible with a distal auditory nerve disorder affecting one or all of the components in the auditory periphery including terminal auditory nerve dendrites, inner hair cells, and the synapses between inner hair cells and auditory nerve. There is relative sparing of auditory ganglion cells and their axons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2504566PMC
http://dx.doi.org/10.1007/s10162-004-5014-5DOI Listing

Publication Analysis

Top Keywords

auditory nerve
20
hair cells
16
auditory
12
hearing loss
12
distal auditory
8
brainstem responses
8
outer hair
8
auditory temporal
8
temporal processes
8
family members
8

Similar Publications

Objective: The aim of this study is to test the feasibility of a custom 3D-printed guide for performing a minimally invasive cochleostomy for cochlear implantation.

Study Design: Prospective performance study.

Setting: Secondary care.

View Article and Find Full Text PDF

Improving Real-Time Feedback During Cochlear Implantation: The Auditory Nerve Neurophonic/Cochlear Microphonic Ratio.

Ear Hear

January 2025

Department of Otorhinolaryngology and Head and Neck Surgery, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.

Objectives: Real-time monitoring of cochlear function to predict the loss of residual hearing after cochlear implantation is now possible. Current approaches monitor the cochlear microphonic (CM) during implantation from the electrode at the tip of the implant. A drop in CM response of >30% is associated with poorer hearing outcomes.

View Article and Find Full Text PDF

Deciphering compromised speech-in-noise intelligibility in older listeners: the role of cochlear synaptopathy.

eNeuro

January 2025

Hearing Technology @ WAVES, Department of Information Technology, Ghent University, Technologiepark 216, 9052 Zwijnaarde, Belgium

Speech intelligibility declines with age and sensorineural hearing damage (SNHL). However, it remains unclear whether cochlear synaptopathy (CS), a recently discovered form of SNHL, significantly contributes to this issue. CS refers to damaged auditory-nerve synapses that innervate the inner hair cells and there is currently no go-to diagnostic test available.

View Article and Find Full Text PDF

Circadian rhythm disruptions exacerbate inner ear damage in a murine endolymphatic hydrops model.

FASEB J

January 2025

Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.

Meniere's disease (MD) is an inner ear disease characterized by endolymphatic hydrops (EH). Maintaining a regular daily routine is crucial for MD patients. However, the relationship between circadian rhythms and MD remains unclear.

View Article and Find Full Text PDF

Background: Cochlear implants (CIs) are neuroprosthetic devices which restore hearing in severe-to-profound hearing loss through electrical stimulation of the auditory nerve. Current CIs use an externally worn audio processor. A long-term goal in the field has been to develop a device in which all components are contained within a single implant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!