AI Article Synopsis

  • Microperoxidases are small heme-peptides derived from cytochrome c that possess peroxidase activity and have potential applications.
  • MMP-5, a novel microperoxidase from Marinobacter hydrocarbonoclasticus, was characterized using mass spectrometry and is structurally simplified for better water solubility, lacking certain amino acids.
  • Upon ionization, MMP-5 exhibits a notable tendency to reduce its iron protoporphyrin structure, which is indicated by observable mass shifts.

Article Abstract

Microperoxidases are small heme-peptides obtained by proteolytic digestion of cytochrome c, exhibiting peroxidase activity. They consist of a short- or medium-length polypeptide chain, covalently linked to an iron protoporphyrin IX moiety via two thioether bonds involving Cys residues at the c-porphyrin A and B pyrrole rings. These small molecules are interesting for a wide range of possible applications. We have structurally characterized, by means of electrospray ionization (ESI) mass and tandem mass spectrometric experiments, a novel microperoxidase called MMP-5 (Marinobacter MicroPeroxidase-5), obtained by proteolytic digestion of cytochrome c552, a monoheminic electron-transfer protein isolated from Marinobacter hydrocarbonoclasticus. This microperoxidase, which still maintains the functional peptide moieties for peroxidase activity, is devoid of the two amino acids intercalating the Cys residues linked to the c-porphyrin, thus increasing its water solubility. Once submitted to the ESI source potential, MMP-5 showed an interesting tendency for the reduction of the iron protoporphyrin substructure. This behaviour was clearly evidenced by the mass shift exhibited by the reduced form.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jms.788DOI Listing

Publication Analysis

Top Keywords

novel microperoxidase
8
marinobacter hydrocarbonoclasticus
8
electrospray ionization
8
tandem mass
8
proteolytic digestion
8
digestion cytochrome
8
peroxidase activity
8
iron protoporphyrin
8
cys residues
8
characterization novel
4

Similar Publications

Heterogeneous sandwich immunoassays are widely used for biomarker detection in bioanalysis and medical diagnostics. The high analyte sensitivity of the current "gold standard" enzyme-linked immunosorbent assay (ELISA) originates from the signal-generating enzymatic amplification step, yielding a high number of optically detectable reporter molecules. For future point-of-care testing (POCT) and point-of-need applications, there is an increasing interest in more simple detection strategies that circumvent time-consuming and temperature-dependent enzymatic reactions.

View Article and Find Full Text PDF

Insulin resistance is one major features of type 2 diabetes mellitus (T2DM). Deuterohemin-βAla-His-Thr-Val-Glu-Lys (DhHP-6), a novel microperoxidase mimetic designed and synthesized based on microperoxidase 11 (MP-11), can scavenge reactive oxygen species (ROS) in vivo. In our previous studies, we showed that oral DhHP-6 could reduce blood glucose and improve insulin resistance.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a progressive neurodegenerative brain disease and is the most common cause of dementia in the elderly. The main hallmark of AD is the deposition of insoluble amyloid (Aβ) outside the neuron, leading to amyloid plaques and neurofibrillary tangles in the brain. Deuterohemin-Ala-His-Thr-Val-Glu-Lys (DhHP-6), a novel porphyrin-peptide, has both microperoxidase activity and cell permeability.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common neurodegenerative disorder in the elderly, which is characterized by the accumulation of amyloid β (Aβ) plaques, oxidative stress, and neuronal loss. Therefore, clearing Aβ aggregates and reducing oxidative stress could be an effective therapeutic strategy for AD. Deuterohemin-AlaHisThrValGluLys (DhHP-6), a novel deuterohemin-containing peptide mimetic of the natural microperoxidase-11 (MP-11), shows higher antioxidant activity and stability compared to the natural microperoxidases.

View Article and Find Full Text PDF

Efficient and Flexible Preparation of Biosynthetic Microperoxidases.

Biochemistry

January 2017

Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States.

Heme peptides and their derivatives, also called microperoxidases (MPs), are employed as heme protein active site models, catalysts, and charge-transfer chromophores. In this work, two approaches to the biosynthesis of novel MPs are described. In one method, heme peptides are expressed as C-terminal tags to the protein azurin and the MP is liberated by proteolytic cleavage by an endopeptidase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!