Determination of the glycosylation site in flavonoid mono-O-glycosides by collision-induced dissociation of electrospray-generated deprotonated and sodiated molecules.

J Mass Spectrom

Department of Pharmaceutical Sciences, University of Antwerp (Campus Drie Eiken), Universiteitsplein 1, B-2610 Antwerp, Belgium.

Published: March 2005

AI Article Synopsis

  • The study examined how the position of glycosylation affects the fragmentation of 18 flavonoid glycosides using mass spectrometry techniques.
  • The findings revealed that the glycosylation site significantly influences the abundance of radical aglycone ions, with notable differences observed in ions from flavonol 3-O-glycosides and positional isomers.
  • The analysis allowed for clear differentiation between common glycosylation positions (3-, 4', and 7) based on the behavior of product ions during collisional activation, aiding in the identification of unknown compounds.

Article Abstract

The influence of the glycosylation site on the fragmentation behavior of 18 flavonoid glycoside standards was studied using positive and negative electrospray ionization mass spectrometry in combination with collision-induced dissociation and tandem mass spectrometry. The glycosylation position is shown to affect the relative abundance of the radical aglycone ions that can be observed in the [M-H]- collision-induced dissociation spectra. In particular, the radical aglycone ions are very abundant for deprotonated flavonol 3-O-glycosides. Collisional activation of the radical aglycone ions produced from positional isomers revealed minor differences: m,nB0- product ions are pronounced for 7-O-glycosides, whereas m,nA0- product ions are relatively more abundant for 4'-O-glycosides. In addition, the ratio between the radical aglycone and the regular aglycone ions in the [M+Na]+ high-energy collision-induced dissociation spectra gives an indication about the glycosylation site. This ion ratio allows the differentiation between flavonoid 3-O- and 7-O-glycosides or can be useful in the comparison of unknown compounds with standards. Unambiguous differentiation between O-glycosylation at the common positions of flavonoid O-glycosides, i.e. the 3-, 4'- and 7-positions, is achieved by collisional activation of sodiated molecules at high collision energy. The presence of a B-ring product ion containing the sugar residue indicates 4'-O-glycosylation, whereas the loss of the B-ring part from the aglycone product ion is characteristic of 3-O-glycosylation and the loss of the B-ring part from both the [M+Na]+ precursor ion and the aglycone product ion points to 7-O-glycosylation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jms.794DOI Listing

Publication Analysis

Top Keywords

collision-induced dissociation
16
radical aglycone
16
aglycone ions
16
glycosylation site
12
product ion
12
sodiated molecules
8
mass spectrometry
8
dissociation spectra
8
ions abundant
8
collisional activation
8

Similar Publications

Structural Changes in Atomically Precise Ag Nanoclusters upon Sequential Attachment and Detachment of Secondary Ligands.

ACS Nano

January 2025

DST Unit of Nanoscience (DST UNS) & Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.

Elucidating the structural dynamics of ligand-stabilized noble metal nanoclusters (NCs) is critical for understanding their properties and for developing applications. Ligand rearrangement at NC surfaces is an important contributor to structural change. In this study, we investigate the dynamic behavior of ligand-protected [Ag(L)] NC's (L = 1,3-benzenedithiol) interacting with secondary ligand 2,2'-[1,4-phenylenebis (methylidynenitrilo)] bis[benzenethiol] (referred to as ).

View Article and Find Full Text PDF

A simple, fast, sample-saving, and sensitive liquid chromatography-tandem mass spectrometry method was established with a linear range adjusted by in-source collision-induced dissociation. Notably, this could simultaneously determine busulfan, fludarabine, phenytoin, and posaconazole in plasma from children, each having unique physical and chemical properties. The procedure necessitated only 20 μL of plasma and involved a simple protein precipitation process.

View Article and Find Full Text PDF

Conjugation of short-chain fatty acids (SDFAs) to amines containing ring structures allows for better measurement by liquid chromatography tandem mass spectroscopy (LC-MS/MS). However, collision-induced dissociation (CID) results in breaking the conjugate back to the original SCFA and amine. We therefore set out to find an amine that would remain on the SCFA after CID and create a unique daughter for selectivity of measurement.

View Article and Find Full Text PDF

Suppression of Collision-Induced Dissociation in a Supersonically Expanding Gas.

Anal Chem

January 2025

Department of Physics & CAMOST, IISER Tirupati, Tirupati 517619, Andhra Pradesh, India.

In high-resolution mass spectrometry, an electrospray ionization source is often paired with an ion-funnel to enhance ion transmission. Although it is established that ions experience collision-induced dissociation as they pass through this device, the impact of gas-flow dynamics on ion fragmentation remains unexplored. The present work demonstrates that the gas-flow dynamics from the capillary interface of an electrospray ionization source into an ion-funnel significantly reduces ion fragmentation.

View Article and Find Full Text PDF

[Vacuum ultraviolet laser dissociation and proteomic analysis of halogenated peptides].

Se Pu

February 2025

CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

Chemical modifications are widely used in research fields such as quantitative proteomics and interaction analyses. Chemical-modification targets can be roughly divided into four categories, including those that integrate isotope labels for quantification purposes, probe the structures of proteins through covalent labeling or cross-linking, incorporate labels to improve the ionization or dissociation of characteristic peptides in complex mixtures, and affinity-enrich various poorly abundant protein translational modifications (PTMs). A chemical modification reaction needs to be simple and efficient for use in proteomics analysis, and should be performed without any complicated process for preparing the labeling reagent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!