Maytansine, a potent clinically evaluated plant-derived anti-tumor drug, and its microbial counterpart, ansamitocin P-3, showed a substantially higher cytoxicity than many other anti-tumor drugs. Owing to a shortage of material and lack of sufficiently sensitive analytical methods at the time, no metabolism studies were apparently carried out in conjunction with the initial preclinical and clinical studies on maytansine, but some products of decomposition during the period of storage of the formulated drug were reported. In the current study, the in vitro metabolism of maytansine and ansamitocin P-3 was studied after incubation with rat and human liver microsomes in the presence of NADPH, and with rat and human plasma and whole blood, using liquid chromatography/multi-stage mass spectrometry. Unchanged ansamitocin P-3 and 11 metabolites and unchanged maytansine and seven metabolites were profiled and the structures of some metabolites were tentatively assigned based on their multi-stage electrospray ion-trap mass fragmentation data and in some cases accurate mass measurement. The major pathway of ansamitocin P-3 metabolism in human liver microsomes appears to be demethylation at C-10. Oxidation and sequential oxidation/demethylation also occurred, although to a lesser extent. However, the major pathway of maytansine metabolism in human liver microsomes is N-demethylation of the methylamide of the ester moiety. Several minor pathways including O/N-demethylation, oxidation and hydrolysis of the ester bond were also observed. There were no differences in maytansine metabolism between rat and human liver microsomes; however, the rate of metabolism of ansamitocin P-3 was different in rat and human liver microsomes. About 20% of ansamitocin P-3 was converted to its metabolites in rat liver microsomes and about 70% in human liver microsomes under the same conditions. Additionally, 10-O-demethylated ansamitocin P-3 was also detected in the urine after i.v. bolus administration of ansamitocin P-3 to Sprague-Dawley male rats. No metabolites were detected following incubation of maytansine and ansamitocin P-3 with human and rat whole blood and plasma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jms.800 | DOI Listing |
ACS Synth Biol
March 2024
State Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China.
Currently, most maytansine-containing antibody-drug conjugates (ADCs) in clinical trials are prepared with DM1 or DM4, which in turn is synthesized mainly from ansamitocin P-3 (AP-3), a bacterial maytansinoid, isolated from . However, due to the high self-toxicity of AP-3 to , the yield of AP-3 has been difficult to improve. Herein, a new maytansinoid with much lower self-toxicity to , 3--carbamoylmaytansinol (CAM, ), was designed and generated by introducing the 3--carbamoyltransferase gene together with the -methyltransferase genes from exogenous maytansinoid gene clusters into the 3--acyltransferase gene () deleted mutant HGF052.
View Article and Find Full Text PDFCommun Biol
August 2023
State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
Microbial bioactive natural products mediate ecologically beneficial functions to the producing strains, and have been widely used in clinic and agriculture with clearly defined targets and underlying mechanisms. However, the physiological effects of their biosynthesis on the producing strains remain largely unknown. The antitumor ansamitocin P-3 (AP-3), produced by Actinosynnema pretiosum ATCC 31280, was found to repress the growth of the producing strain at high concentration and target the FtsZ protein involved in cell division.
View Article and Find Full Text PDFNanoscale
February 2023
School of Pharmacy, Changzhou University, Changzhou 213164, China.
Ansamitocin P-3 (AP-3) is a promising anticancer agent. However, its low solubility has limited its biomedical applications. The preparation of liposomal formulations for the delivery of low solubility drugs using the microfluidic platform has attracted increasing attention in the pharmaceutical industry.
View Article and Find Full Text PDFBioengineering (Basel)
November 2022
State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
is a well-known producer of maytansinoid antibiotic ansamitocin P-3 (AP-3). Growth of in submerged culture was characterized by the formation of complex mycelial particles strongly affecting AP-3 production. However, the genetic determinants involved in mycelial morphology are poorly understood in this genus.
View Article and Find Full Text PDFBioresour Bioprocess
August 2022
State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
Ansamitocin P-3 (AP-3) produced by Actinosynnema pretiosum is a potent antitumor agent. However, lack of efficient genome editing tools greatly hinders the AP-3 overproduction in A. pretiosum.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!