Sequence-specific DNA binding is a major activity of the tumor suppressor p53 and a prerequisite for the transactivating potential of the protein. p53 interaction with target DNA is tightly regulated by various mechanisms, including binding of different components of the transcription machinery, post-translational modifications, and interactions with other factors that modulate p53 transactivation in a cell context- and promoter-specific manner. The bi-functional redox factor 1 (Ref-1/APE1) has been identified as one of the factors, which can stimulate p53 DNA binding by redox-dependent as well as redox-independent mechanisms. Whereas stimulation of p53 DNA binding by the redox activities of Ref-1 is understood quite well, little is known about mechanisms that underlie the redox-independent effects of Ref-1. We report in this study a previously unknown activity of Ref-1 as a factor promoting tetramerization of p53. We demonstrate that Ref-1 promotes association of dimers into tetramers, and de-stacking of higher oligomeric forms into the tetrameric form in vitro, thereby enhancing p53 binding to target DNA.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.onc.1208351DOI Listing

Publication Analysis

Top Keywords

dna binding
16
p53
9
redox factor
8
target dna
8
p53 dna
8
dna
6
binding
6
ref-1
5
factor ref-1
4
ref-1 enhances
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!