The increasing use of azole antifungals for the treatment of mucosal and systemic Candida glabrata infections has resulted in the selection and/or emergence of resistant strains. The main mechanisms of azole resistance include alterations in the C. glabrata ERG11 gene (CgERG11), which encodes the azole target enzyme, and upregulation of the CgCDR1 and CgCDR2 genes, which encode efflux pumps. In the present study, we evaluated these molecular mechanisms in 29 unmatched clinical isolates of C. glabrata, of which 20 isolates were resistant and 9 were susceptible dose dependent (S-DD) to fluconazole. These isolates were recovered from separate patients during a 3-year hospital survey for antifungal resistance. Four of the 20 fluconazole-resistant isolates were analyzed together with matched susceptible isolates previously taken from the same patients. Twenty other azole-susceptible clinical C. glabrata isolates were included as controls. MIC data for all the fluconazole-resistant isolates revealed extensive cross-resistance to the other azoles tested, i.e., itraconazole, ketoconazole, and voriconazole. Quantitative real-time PCR analyses showed that CgCDR1 and CgCDR2, alone or in combination, were upregulated at high levels in all but two fluconazole-resistant isolates and, to a lesser extent, in the fluconazole-S-DD isolates. In addition, slight increases in the relative level of expression of CgSNQ2 (which encodes an ATP-binding cassette [ABC] transporter and which has not yet been shown to be associated with azole resistance) were seen in some of the 29 isolates studied. Interestingly, the two fluconazole-resistant isolates expressing normal levels of CgCDR1 and CgCDR2 exhibited increased levels of expression of CgSNQ2. Conversely, sequencing of CgERG11 and analysis of its expression showed no mutation or upregulation in any C. glabrata isolate, suggesting that CgERG11 is not involved in azole resistance. When the isolates were grown in the presence of fluconazole, the profiles of expression of all genes, including CgERG11, were not changed or were only minimally changed in the resistant isolates, whereas marked increases in the levels of gene expression, particularly for CgCDR1 and CgCDR2, were observed in either the fluconazole-susceptible or the fluconazole-S-DD isolates. Finally, known ABC transporter inhibitors, such as FK506, were able to reverse the azole resistance of all the isolates. Together, these results provide evidence that the upregulation of the CgCDR1-, CgCDR2-, and CgSNQ2-encoded efflux pumps might explain the azole resistance in our set of isolates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC547307PMC
http://dx.doi.org/10.1128/AAC.49.2.668-679.2005DOI Listing

Publication Analysis

Top Keywords

azole resistance
24
isolates
17
cgcdr1 cgcdr2
16
fluconazole-resistant isolates
16
resistance isolates
12
mechanisms azole
8
resistance
8
clinical isolates
8
candida glabrata
8
hospital survey
8

Similar Publications

Overexpression of miR-124 enhances the therapeutic benefit of TMZ treatment in the orthotopic GBM mice model by inhibition of DNA damage repair.

Cell Death Dis

January 2025

State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi Province, China.

Glioblastoma (GBM) is the most common malignant primary brain cancer with poor prognosis due to the resistant to current treatments, including the first-line drug temozolomide (TMZ). Accordingly, it is urgent to clarify the mechanism of chemotherapeutic resistance to improve the survival rate of patients. In the present study, by integrating comprehensive non-coding RNA-seq data from multiple cohorts of GBM patients, we identified that a series of miRNAs are frequently downregulated in GBM patients compared with the control samples.

View Article and Find Full Text PDF

Background: Direct acting antivirals (DAAs) have demonstrated remarkable efficacy, in achieving hepatitis C viral (HCV) elimination rates higher than 90%. One particular concern associated with treatment failure is the emergence of resistance associated substitutions (RASs) in the genome. The occurrence of RASs highlights the adaptability and resilience of the HCV.

View Article and Find Full Text PDF

This study explores the effectiveness of various antifungal drugs in treating sporotrichosis caused by Sporothrix schenckii, especially in non-wild-type (non-WT) strains. The drugs tested include enilconazole (ENIL), isavuconazole (ISA), posaconazole (POS), terbinafine (TER), and itraconazole (ITC). The study involved in vitro and in vivo tests on 10 WT isolates and eight ITC non-WT isolates.

View Article and Find Full Text PDF

Multidrug resistance in the pathogenic fungus Candida glabrata is a growing global threat. Here, we study mechanisms of multidrug resistance in this pathogen. Exposure of C.

View Article and Find Full Text PDF

Pifithrin-μ sensitizes mTOR-activated liver cancer to sorafenib treatment.

Cell Death Dis

January 2025

Department of Organ Transplantation and Hepatobiliary Surgery, Key Laboratory of Organ Transplantation of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.

TSC2, a suppressor of mTOR, is inactivated in up to 20% of HBV-associated liver cancer. This subtype of liver cancer is associated with aggressive behavior and early recurrence after hepatectomy. Being the first targeted regimen for advanced liver cancer, sorafenib has limited efficacy in HBV-positive patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!