It is believed that a major reason for the poor functional recovery after peripheral nerve lesion is collateral branching and regrowth of axons to incorrect muscles. Using a facial nerve injury protocol in rats, we previously identified a novel and clinically feasible approach to combat axonal misguidance--the application of neutralizing antibodies against neurotrophic factors to the injured nerve. Here, we investigated whether reduced collateral branching at the lesion site leads to better functional recovery. Treatment of rats with antibodies against nerve growth factor, brain-derived neurotrophic factor, fibroblast growth factor, insulin-like neurotrophic factor I, ciliary neurotrophic factor or glial cell line-derived neurotrophic factor increased the precision of reinnervation, as evaluated by multiple retrograde labelling of motoneurons, more than two-fold as compared with control animals. However, biometric analysis of vibrissae movements did not show positive effects on functional recovery, suggesting that polyneuronal reinnervation--rather than collateral branching --may be the critical limiting factor. In support of this hypothesis, we found that motor end-plates with morphological signs of multiple innervation were much more frequent in reinnervated muscles of rats that did not recover after injury (51% of all end-plates) than in animals with good functional performance (10%). Because polyneuronal innervation of muscle fibres is activity-dependent and can be manipulated, the present findings raise hopes that clinically feasible and effective therapies could be soon designed and tested.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1460-9568.2005.03877.xDOI Listing

Publication Analysis

Top Keywords

neurotrophic factor
16
functional recovery
12
collateral branching
12
facial nerve
8
clinically feasible
8
growth factor
8
factor
7
nerve
5
functional
5
neurotrophic
5

Similar Publications

Network Pharmacology Combined With Metabolomics Reveals the Mechanism of Yangxuerongjin Pill Against Type 2 Diabetic Peripheral Neuropathy in Rats.

Drug Des Devel Ther

January 2025

Beijing Tongrentang Technology Development Co., Ltd. Pharmaceutical Factory, Beijing, 100079, People's Republic of China.

Purpose: This study aims to explore the mechanism of Yangxuerongjin pill (YXRJP) in the treatment of diabetic peripheral neuropathy (DPN) by network pharmacology and metabolomics technology combined with animal experiments, and to provide scientific basis for the treatment of DPN.

Methods: In this study, network pharmacology analysis was applied to identify the active compounds, core targets and signal pathways, which might be responsible for the effect of DPN. The DPN model was established by high-fat diet combined with streptozotocin (STZ) injection, and the rats were given administration for 12 weeks.

View Article and Find Full Text PDF

Background: Studies suggest that obesity predisposes individuals to developing cognitive dysfunction and an increased risk of dementia, but the nature of the relationship remains largely unexplored for better prognostic predictors.

Purpose: This study, the first of its kind in Indian participants with obesity, was intended to explore the use of quantification of different neurocognitive indices with increasing body mass index (BMI) among middle-aged participants with obesity. Additionally, machine-learning models were used to analyse the predictive performance of BMI for different cognitive functions.

View Article and Find Full Text PDF

Background: Spinal cord injury (SCI) treatment remains a formidable challenge, as current therapeutic approaches provide only marginal relief and fail to reverse the underlying tissue damage. This study aims to develop a novel composite material combining enzymatic nanoparticles and nerve growth factor (NGF) to modulate the immune microenvironment and enhance SCI repair.

Methods: CeMn nanoparticles (NP) and CeMn NP-polyethylene glycol (PEG) nanozymes were synthesized via sol-gel reaction and DSPE-mPEG modification.

View Article and Find Full Text PDF

Background: Klotho and neurotrophic factors, including brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and glial cell line-derived neurotrophic factor (GDNF), have been shown to play a role in cognitive functions. However, these molecules have not been investigated in bipolar disorder simultaneously to assess the interactions among them and their relationships with cognitive functions. This study investigated the relationships among cognitive function, klotho, and neurotrophic factors in patients with bipolar disorder in the remission period.

View Article and Find Full Text PDF

Exploring the Different Impacts of Ketamine on Neurotrophic Factors and Inflammatory Parameters in a Cecal Ligation and Puncture-Induced Sepsis Model.

Neurotox Res

January 2025

Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil.

Given ketamine's conflicting impacts on the central nervous system, investigating its effects within an inflammatory context becomes crucial. This study aimed to assess the impact of varying ketamine doses on neurotrophin and inflammatory cytokine levels within the brains of rats submitted to the sepsis model. Wistar rats were submitted to the cecal ligation and puncture (CLP) model of sepsis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!