Background: Previously, we showed the expression of a unique sulfonylurea receptor (SUR) and its putative endogenous ligand, alpha-endosulfine, in mesangial cells and isolated glomeruli. Further, this ligand was up-regulated by high glucose concentration. To investigate the possible role of alpha-endosulfine up-regulation in diabetes, we administered sulfonylureas, the exogenous ligands of SUR, to diabetic animals.
Methods: In streptozotocin-induced, insulin-deficient, diabetic rats, glomerulosclerosis, albuminuria, glomerular expression of fibronectin mRNA, and glomerular filtration rate (GFR) were studied for various periods up to 36 weeks. Several rat groups received either glibenclamide or tolazamide during the entire study period. Also, glomerulosclerosis and albuminuria were determined in insulin-resistant db/db mice, at 26 weeks of treatment with tolazamide.
Results: Sulfonylureas did not improve hyperglycemia or reduce glycosylated hemoglobin levels. In insulin-deficient diabetic rats, sulfonylureas significantly decreased the degree of glomerulosclerosis and completely reversed the enhanced albumin excretion. Also, glibenclamide reduced diabetes-induced glomerular overexpression of fibronectin mRNA. Because glibenclamide may improve the afferent arteriolar dilatation of diabetes, thereby reducing glomerular hyperfiltration, its effect on GFR was determined. Glibenclamide did not alter glomerular hyperfiltration or renal hypertrophy, regardless of the intensity of hyperglycemia. Finally, in insulin-resistant mice, tolazamide did not alter the extent of diabetic glomerulosclerosis or increased albuminuria.
Conclusion: Long-term treatment with sulfonylureas completely prevents glomerular injury in insulin-deficient diabetes in rats. However, this protective effect is not demonstrable in an insulin-resistant model of the disease. We postulate that mesangial alpha-endosulfine up-regulation in the hyperglycemic milieu of insulin-deficient diabetes may retard glomerular extracellular matrix formation and mesangial expansion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1523-1755.2005.67112.x | DOI Listing |
Nat Commun
February 2022
Department of Breast Surgery, Shanghai Cancer Center and Cancer Institute, Shanghai Medical College, Fudan University, 200032, Shanghai, P. R. China.
Copy number alterations (CNAs) are pivotal genetic events in triple-negative breast cancer (TNBC). Here, our integrated copy number and transcriptome analysis of 302 TNBC patients reveals that gene alpha-endosulfine (ENSA) exhibits recurrent amplification at the 1q21.3 region and is highly expressed in TNBC.
View Article and Find Full Text PDFCancer Med
September 2020
VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA.
Targeting mitotic kinases is an emerging anticancer approach with promising preclinical outcomes. Microtubule-associated serine/threonine kinase like (MASTL), also known as Greatwall (Gwl), is an important mitotic kinase that regulates mitotic progression of normal or transformed cells by blocking the activity of tumor suppressor protein phosphatase 2A (PP2A). MASTL upregulation has now been detected in multiple cancer types and associated with aggressive clinicopathological features.
View Article and Find Full Text PDFMol Cell Proteomics
March 2019
Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York. Electronic address:
In almost all animals studied to date, the crucial process of egg activation, by which an arrested mature oocyte transitions into an actively developing embryo, initiates with an increase in Ca in the oocyte's cytoplasm. This Ca rise sets off a series of downstream events, including the completion of meiosis and the dynamic remodeling of the oocyte transcriptome and proteome, which prepares the oocyte for embryogenesis. Calcineurin is a highly conserved phosphatase that is activated by Ca upon egg activation and that is required for the resumption of meiosis in ,, ascidians, and Drosophila.
View Article and Find Full Text PDFAdv Biol Regul
May 2013
Clare Hall Laboratories, Cancer Research UK, South Mimms, Herts EN6 3LD, UK.
The process of mitosis involves a comprehensive reorganization of the cell: chromosomes condense, the nuclear envelope breaks down, the mitotic spindle is assembled, cells round up and release their ties to the substrate and so on and so forth. This reorganization is triggered by the activation of the protein kinase, Cyclin-Dependent Kinase 1 (CDK1). The end of mitosis is marked by the proteolysis of the cyclin subunit of CDK1, which terminates kinase activity.
View Article and Find Full Text PDFKidney Int
February 2005
Division of Nephrology and Hypertension, Department of Medicine, Henry Ford Hospital, Detroit, Michigan 48202, USA.
Background: Previously, we showed the expression of a unique sulfonylurea receptor (SUR) and its putative endogenous ligand, alpha-endosulfine, in mesangial cells and isolated glomeruli. Further, this ligand was up-regulated by high glucose concentration. To investigate the possible role of alpha-endosulfine up-regulation in diabetes, we administered sulfonylureas, the exogenous ligands of SUR, to diabetic animals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!