The prostate gland is unique in its ability to secrete large amounts of zinc and citrate, suggesting that it employs unusual transport mechanisms. Intracellular ionic homeostasis in prostate is likely to be mediated by the Na,K-pump, yet there have been few studies of its regulation in this tissue. Accordingly, we explored the expression of the Na,K-pump in PC3 cells, an established cell line of human prostate epithelial cells. Total RNA from confluent monolayers of PC3 cells was isolated, reverse transcribed, and the resulting complementary DNA was amplified by polymerase chain reaction using primers specific for each of the pump's constituent subunits. The amplification revealed a complex pattern of Na,K-pump expression, with detection of mRNAs encoding the alpha1-, alpha3-, alpha4-, betal-, beta2- and beta3-isoforms. We next examined the effect on pump activity of prolactin, an important mediator of cell proliferation in prostate cancer. Monolayers exposed to 10 nM prolactin for 24 hr revealed an inhibition of 40% in ouabain-sensitive 86Rb+ uptake, a sensitive measure of pump-mediated transport. These experiments suggest that the unique transport properties of prostate may depend, at least in part, on a complicated pattern of Na,K-pump expression and regulation.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!