Neurodegenerative effects of Schwann cells transplanted into the central nervous system have been observed previously. We report here that conditioned medium from Schwann cell cultures exhibit degenerative influences on hippocampal neurons. Aliquots of Schwann cell-conditioned medium compromised the morphologic integrity of the neurons, markedly elevated their intracellular calcium concentrations, and decreased their viability. The degenerative effects of Schwann cell medium on neuronal morphology and viability were blocked by N-methyl-D-aspartate (NMDA) receptor antagonists D-(-)-2-amino-5-phosphonopentanoic acid (D-APV) and 5,7-dicholorokynurenic acid (DCKA). Glutamate was detected in Schwann cell-conditioned medium at a concentration on the order of 10(-5) M. D-Amino acid oxidase (DAAOx) also attenuated the neurotoxicity exhibited by Schwann cells. These data suggest that Schwann cells release biologically relevant concentrations of excitotoxins that include glutamate and D-serine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jnr.20401 | DOI Listing |
IBRO Neurosci Rep
June 2025
Orthopaedic Center, Affiliated Hospital of Hebei University of Engineering, No.81 Congtai Road, Congtai District, Handan City, Hebei Province 56004, China.
The peripheral nervous system is a complex ecological network, and its injury triggers a series of fine-grained intercellular regulations that play a crucial role in the repair process. The peripheral nervous system is a sophisticated ecological network, and its injury initiates a cascade of intricate intercellular regulatory processes that are instrumental in the repair process. Despite the advent of sophisticated microsurgical techniques, the repair of peripheral nerve injuries frequently proves inadequate, resulting in adverse effects on patients' quality of life.
View Article and Find Full Text PDFFront Immunol
January 2025
Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, Netherlands.
Introduction: Remyelination of demyelinated axons can occur as an endogenous repair mechanism in multiple sclerosis (MS), but its efficacy varies between both MS individuals and lesions. The molecular and cellular mechanisms that drive remyelination remain poorly understood. Here, we studied the relation between microglia activation and remyelination activity in MS.
View Article and Find Full Text PDFBioact Mater
May 2025
State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China.
Wound healing in chronic diabetic patients remains challenging due to the multiple types of cellular dysfunction and the impairment of multidimensional microenvironments. The physical signals of structural anisotropy offer significant potential for orchestrating multicellular regulation through physical contact and cellular mechanosensing pathways, irrespective of cell type. In this study, we developed a highly oriented anisotropic nanofiber hydrogel designed to provide directional guidance for cellular extension and cytoskeletal organization, thereby achieving pronounced multicellular modulation, including shape-induced polarization of macrophages, morphogenetic maturation of Schwann cells, oriented extracellular matrix (ECM) deposition by fibroblasts, and enhanced vascularization by endothelial cells.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, Shanghai, 200011, China.
Studies have shown that the prognosis of dental implant treatment in patients with diabetes is not as good as that in the non-diabetes population. The nerve plays a crucial role in bone metabolism, but the role and the mechanism of peripheral nerves in regulating peri-implant osteogenesis under Type 2 diabetes mellitus (T2DM) situation remains unclear. In this study, it was shown that high glucose-stimulated Schwann cells (SCs) inhibited peri-implant osteogenesis via their exosomes.
View Article and Find Full Text PDFCell Transplant
January 2025
Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Neuropathic pain is a debilitating complication following spinal cord injury (SCI). Currently, effective treatments for SCI-induced neuropathic pain are highly lacking. This clinical trial aimed to investigate the efficacy of combined intrathecal injection of Schwann cells (SCs) and bone marrow-derived mesenchymal stem cells (BMSCs) in improving SCI-induced neuropathic pain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!