Factors that determine the differential expression of isoforms of Na(+),K(+)-ATPase in the nervous system of vertebrates are not understood. To address this question we studied the expression of alpha(3) Na(+),K(+)-ATPase in the L5 dorsal root ganglia (DRG) of developing rat, the normal adult rat, and the adult rat after peripheral axotomy. During development, the first alpha(3) Na(+),K(+)-ATPase-positive DRG neurons appear by embryonic day 21. At birth, the L5 DRG have a full complement (14 +/- 2%) of these neurons. By 15 days after sciatic nerve transection in adult rat, the number of alpha(3) Na(+),K(+)-ATPase-positive DRG neurons and small myelinated L5 ventral root axons decreases to about 35% of control counts. These results combined with data from the literature suggest that the expression of alpha(3) Na(+),K(+)-ATPase by rat somatic neurons is determined by target-muscle spindle-derived factors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cne.20401 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!